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Fluxes of dissolved and particulate nitrogen (N) and phosphorus (P) variables were measured monthly
from September 2007 to March 2009 in the upper Longchuanjiang River (Yunnan Province, China) to
determine annual loads and seasonal variability. Dissolved N (DN) and particle associated P (PAP)
contributed 56% and 99% of the total nitrogen (TN) and total phosphorus (TP) yields of 549 and
608 kg/km2/yr. Fluxes of particulate N (PN), dissolved P (DP), PAP and TP exhibited great seasonality
because they were highly correlated with water discharge. Areal export rates of NHþ4 –N, PN, PAP and
TP were higher than in the main channel and most tributaries of the Changjiang River. High particulate
loads were contributed to erosion of phosphorus-rich soils during heavily rains in the wet season. Median
measured concentrations of TN, NHþ4 –N and TP exceeded the maximum permissible limit for domestic
and recreational use in China. High nitrogen and phosphorus concentrations draw attention to the poten-
tial for additional nutrient loading to foster the formation of algal blooms in locations where free-flowing
river sections are changing into cascades of reservoirs. Importantly, the great seasonality in the data
shows necessity of sufficient sampling for determining annual fluxes.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Stream nitrogen (N) and phosphorus (P) have a variety of natu-
ral and anthropogenic sources including chemical weathering
(Chalk and Keeney, 1971; Holloway et al., 1998), decomposition
of organic material, atmospheric deposition, agricultural chemical
fertilizers, and effluents from livestock, domestic and industrial
sources (Li et al., 2008, 2009a; Elser et al., 2009). Increases in avail-
able forms of N and P as a result of human activity have resulted in
worldwide eutrophication in both freshwater and coastal marine
ecosystems (Meybeck et al., 1989; Turner et al., 2003; Duan
et al., 2007; Conley et al., 2009; Elser et al., 2009), causing hypoxia,
harmful algal blooms and losses of fishery production in aquatic
ecosystem. Further, the biogeochemical cycles of nutrients have
been altered particularly by human population expansion and
industrialization (Elser et al., 2009), thus nutrients such as N and
P species in fluvial system have increasingly been of great concern.

Riverine N:P ratios receive much attention because the changes
in element ratios of nutrients by human activities have been break-
ll rights reserved.
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ing the balance of nutrients and deteriorating the ecosystem (Justic
et al., 1995; Howart et al., 1996; Elser et al., 2009). One of the po-
tential impacts is to influence phytoplankton production ratios and
associated shifts of phytoplankton species in aquatic ecosystem
(Justic et al., 1995; Rabalais et al., 1996). The tributaries and main
channel of the Changjiang River are strongly influenced by anthro-
pogenic activities. Over the past 50 years, especially since the
1980s, nutrient (especially N) concentrations and loads increased
as high as 4-fold (Duan et al., 2000; Yan et al., 2003), and conse-
quently Changjiang is heavily polluted by nitrogen (Chen et al.,
2000; Liu et al., 2003).

Prior research on the Changjiang has focused on steam water
geochemistry, levels of nutrients and associated budget and the ef-
fects of nutrient loading on aquatic ecosystems (i.e., Zhang, 1996;
1999; Chen et al., 2000; Duan et al., 2000, 2007, 2008; Liu et al.,
2003; Shen et al., 2003; Shen and Liu, 2009). While most previous
studies were conducted before or during the 1980s and the 1990s,
it is urgent to update the nutrient variables in the Changjiang and
its tributaries to examine their dynamics and patterns.

Longchuanjiang River, located in the upper stream of the
Changjiang, has been experiencing various human activities
(Zhu et al., 2007, 2008). They caused the changes in concentra-
tions and fluxes of nutrient and the shifts in their element ratios,
which consequently altered the patterns of nutrients in its
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downstream. Moreover, increasing nutrients in the upper Chang-
jiang’s tributaries will cause eutrophication in the Three-Gorges
Reservoir. Our previous paper reported major element geochemis-
try and revealed anthropogenic effects on water chemistry (Li
et al., 2011). Hereine, we investigate the effects of anthropogenic
activities on N and P variables in the Longchuanjiang River. Spe-
cifically, we quantify seasonal fluxes of TN, DN, NO�3 –N, NHþ4 –N,
PN, TP, PAP and DP to better understand how they are affected
by various human activities, such as land-cover change, dam
building, and intensified agricultural activity, that are taking place
in the attachment. This study would help water conservation in
the Changjiang’s headwater and provide updated data in develop-
ing regional to global models of nutrient exports from
watersheds.
2. Study area

Originating in Nanhua County in southwest China, the Long-
chuanjiang River joins the lower Jinshajiang, a tributary of the
upper Changjiang (Fig. 1). The 231-km river covers an area of
5560 km2 (24�450N–26�150N and 100�560E–102�020E). The
1788 km2 upper catchment (west of Xiaohekou station) above
our sampling site has a sub-tropic monsoon climate, characterized
by annual mean temperature of 15.6 �C. Annual rainfall depth is
825 mm, with more than 80% occurring in the rainy season from
May to October (Lu, 2005). Elevation extends from 700 to
3000 m a.s.l. The area is dominated by purple phosphorus-rich
soils (Wang et al., 2008), which is very susceptible to water erosion
and weathering. Erosion in the region had accelerated over the past
decades because of increased land-use pressures related to popula-
tion growth and economic incentives that drive development.
Activities that directly influence water quality include deforesta-
tion (in earlier times), intensified agriculture activity, reservoir
building, stone excavation and road construction. In several coun-
Study area

Longchuanjiang

Fig. 1. Map of the Longchuanjiang River with sampling sites an
ties (e.g., Nanhua and Chuxiong), industrial and domestic wastes
are discharged directly into the river.

3. Methods

3.1. Sampling and chemical analyses

Daily water discharge and monthly precipitation were re-
corded from January 2007 to March 2009 by the staff of the
Xiaohekou discharge gauging station located in the Chuxiong
County (Fig. 1). Water samples for chemical analysis were col-
lected during the second week of each month, throughout the
19-month sampling period (September 2007–March 2009). A to-
tal of 19 depth-integrated samples were collected in acid-washed
5-l high density polyethylene (HDPE) bottles using the mecha-
nized pulley system that is used to determine the discharge rat-
ing curve. Samples were filtered immediately through pre-ashed
0.7-lm pore size Whatman GF/F filters in a plastic tent to avoid
contamination. Filtrates were used to determine dissolved nutri-
ent concentrations. Water samples for analysis of TP were not fil-
tered. All water samples were acidified to pH < 2 with high purity
HCl, then preserved in clean (marinate for 24 h in 1:10 hydro-
chloric acid solution beforehand) HDPE bottles in the freezer for
prior to analysis.

N and P species were determined using the ultraviolet–visible
spectrophotometric method (Grassholf et al., 1983; CSEPB,
2002a). DN was measured with potassium peroxodisulphate oxi-
dation-colorimetry; TP and DP with ammonium molybdophos-
phate colorimetry, and NHþ4 –N and NO�3 –N by the Nessler
reagent method and UV spectrophotometry, respectively. Particu-
late nitrogen (PN) was determined using a CHN analyzer. The
concentration of TN was determined as the sum of DN and PN;
and PAP was calculated as the difference between TP and DP.
Detection limits for NO�3 –N, NHþ4 –N, DN, DP and TP were
0.08 mg/l, 0.02 mg/l, 0.05 mg/l, 0.01 mg/l and 0.01 mg/l,
Tuotuo

Tongtian

d gauge stations, and other Changjiang’s tributaries, China.
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respectively. Replicates samples were performed for all tests to
assure data quality control.
3.2. Nutrient fluxes estimation

Interpolation and extrapolation were used to calculate annual
loads from the monthly measured concentrations and daily river
discharge measurements (Webb et al., 1997). Extrapolation was
used when reasonable regression equations (R2 > 0.5 with p val-
ues < 0.05) could be determined for daily water discharge (inde-
pendent variable) and nitrogen and phosphorus concentration
values (independent variables); e.g., PN, DP, PAP and TP fit this
criteria (see below). Interpolation was used for calculations
involving TN, DN, NO�3 –N and NHþ4 –N, required assuming con-
centrations changed at a constant per-day rate between two
measured monthly values (Duan et al., 2000, 2007). Annual
fluxes were calculated as the sum of all interpolated/extrapo-
lated daily values. Catchment nutrient areal export rates were
obtained by dividing the annual fluxes with the catchment
drainage area.
4. Results

4.1. Hydro-climatology

River discharge demonstrated a similar trend with precipita-
tion, with higher flows occurring during May to October/Novem-
ber, and lower values occurring in the low-flow period of then
December to March/April dry season (Fig. 2). Precipitation in
2008 (1083 mm) was higher than in 2007 (958 mm); and both
years were wetter than the 825 mm mean reported by Lu (2005).
Monthly precipitation varied from 0 mm (March and December
2007) to 254 mm (July 2008); and approximately 95% of the total
fell between May and November (Fig. 2). The highest daily dis-
charge value (210 m3/s) was associated with an extreme event
occurring in November 2008; and the lowest daily value
(0.12 m3/s) occurred in April of 2008 dry season. Mean discharge
for the 2008 low-flow and high-flow periods were 1.6 and
17.4 m3/s respectively, demonstrating the great seasonality in
streamflow (Fig. 2). Sampling months were divided into two re-
gimes that corresponded to the monsoon climate and river runoff:
high flow (September and October in 2007, and May through
November in 2008) and low flow periods (November in 2007–April
in 2008 and December in 2008–March in 2009).
Fig. 2. Hydrological characteristics including daily water discharge (m3/s) and monthl
discharge gauging station in the Longchuanjang River, China.
4.2. Monthly variations in nutrients

Concentrations of dissolved N and P variables demonstrated a
general dilution effect during the high-flow period, in contrasts
to particulate variables, which tended to increase during the same
period. Dissolved nitrogen was primarily composed of NO�3 –N and
NHþ4 –N in all but one sample these two exceeded the independent
DN determination. Dissolved nitrogen comprised largest part
(�86%) of TN signature, and therefore tracked TN seasonality
(Fig. 3). In contrast with nitrogen, approximately 95% of TP was
PAP, and therefore the concentrations of TP and PAP exhibited sim-
ilar seasonality patterns (Fig. 3).

Reliable regressions could be developed between discharge and
only for four variables: PN (R2 = 0.7, p < 0.01), PAP (R2 = 0.9,
p < 0.01), TP (R2 = 0.9, p < 0.01) and DP (R2 = 0.6, p < 0.01) (Fig. 4).
Because meaningful regression equations could not be determined
between discharge and TN, DN, NO�3 –N and NHþ4 –N, interpolation
was used to calculated annual loads for these variables (Fig. 4).

Fluxes of several N and P variables reached maximums during
November in the 2008 high-flow period: TN (90 g/s), DN (74 g/s),
NO�3 –N (52 g/s), (NHþ4 –N) 40 g/s, TP (66.1 g/s) and PAP (65.6 g/s)
(Appendix a). Peak values for PN (22 g/s) and DP (0.6 g/s) occurred
in July and August 2008, respectively (Appendix a). The positive
relationship between discharge and particulate concentrations, as
well as the great difference between daily flows in the wet versus
dry season, resulted in high-flow period fluxes of PN and PAP being
3–4 orders of magnitude higher than those in the low-flow period
(Appendix a). Despite the negative relationship between concen-
tration of DP and discharge (Fig. 4), fluxes displayed some season-
ality (Appendix b).

The annual load of TN and TP, estimated via interpolation, was
an estimated 765 and 541 Mg/yr, which was equivalent to about
428 and 303 kg/km2/yr (Table 1). Dissolved and particulate N loads
were 553 and 212 Mg/yr (310 and 119 kg/km2/yr); and DP and PAP
loads were 8 and 533 Mg/yr (4 and 298 kg/km2/yr). In comparison,
loads for PN, DP, PAP, and TP determined with the extrapolation
method were 428, 7, 1080, and 1087 Mg/yr – these values for par-
ticulate variables were all nearly twice those determined via inter-
polation (Table 1).

5. Discussion

5.1. Controls of seasonal variations of nitrogen and phosphorus

The significant seasonality for particulate variables (PN and PAP)
was consistent with patterns found in other studies conducted on
y precipitation (mm) from January 2007 to March 2009 by staff of the Xiaohekou



Fig. 3. Seasonal variability in nutrients of the Longchuanjiang River, China: (a) TN,
DN and PN (b) DN, NO�3 –N and NHþ4 –N, (c) TP, PAP and DP (Y-axis is mg N/L for (a)
and (b), and mg P/L for (b)). The averaged concentration of PN, DP, PAP and TP
showed significant differences between high and low flow periods by analysis of
variance (least significant difference, LSD test, p < 0.01).
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Changjiang River (Figs. 3 and 4) (Liu et al., 2003; Shen and Liu, 2009).
Great seasonality was probably the result of substantial soil erosion
and runoff water entering the river from various sources during the
wet season, which was supported by their strong associations with
total suspended solid (Fig. 5). The concentration of PAP, the major
form of P in the turbid Longchuanjiang River, was more positively
associated with water discharge than PN(Fig. 4), which was due to
phosphorous-rich purple soils in the catchment (in general in
Southwestern China) (Wang et al., 2008). However, DP displayed
markedly higher concentration in the low flow period (p < 0.01 by
ANOVA) as a result of diluted effects of precipitation (Fig. 4) and
sorption by suspended matter in the high flow period (Fig. 5)
(Baturin, 1978; Berge et al., 1997).

Acid rain and agricultural diffuses in the Changjiang basin are
believed to elevate river nitrogen concentrations, particularly in
the wet season (Chen et al., 2000; Bao et al., 2006; Li et al.,
2009b). Our results, however, showed decreases in dissolved vari-
ables such as NO�3 –N, NHþ4 –N in the high-flow period that likely re-
lated to a precipitation dilution effect (Fig. 3; Shen and Liu, 2009).
Shen et al. (2003) reported that NHþ4 –N accounted for approxi-
mately 88% of dissolved inorganic nitrogen in the precipitation in
the Changjiang River basin. With this in mind, large differences
in NO�3 –N/NHþ4 –N ratio between the high and low flow periods
could occur if NO�3 –N did not occur. Our results however demon-
strated small variability in the ratio (1.33 versus 1.17) between
the high and low flow period, respectively, indicating a mix of in-
put sources throughout the year (e.g., precipitation, agricultural
non-point pollutants, and residential sewages) (Chen et al.,
2000), rather than a single important anthropogenic source, such
as agricultural runoff.

5.2. Environmental status of the Longchuanjiang River

Nitrogen and phosphorus concentrations in the Longchuanjiang
River were higher than environmental quality standards for
domestic and recreational use in China (GB3838-2002; CSEPB,
2002b, see Appendix Table). While high values could be harmful
to humans, such as infant methaemoglobinaemia and stomach
cancer by intake of excessive nutrients via food chain (Murphy,
1991), an immediate environmental concern is the effect of eutro-
phication on aquatic organisms. For example, the interaction of
additional nutrient loading and ongoing development of a hydro-
power electricity facility could result in eutrophication in the areas
where free-flowing river is changing into artificial reservoirs.

N:P stoichiometry would help to determine the potential limit-
ing element for phytoplankton growth. The observed high DN:DP
element ratios (median = 113, varying from 41 to 362; based on
the measured concentrations) indicated that the biological activity
could be limited by phosphorus. For example, Hu et al. (1990)
claimed that P limited phytoplankton production in the Changjiang
Estuary when N:P exceeded 30 (cf. Liu et al., 2003; Duan et al.,
2008; Shen and Liu, 2009). However, optimal N:P ratios vary from
about 8–45, depending on the ecological conditions (Kahlert, 1998;
Klausmeier et al., 2004), only one sample in our considered period
fell in this range and thus biological activity was strongly P limited
but much more severe during autumn flood (November 2008;
Appendix c) in the Longchuanjiang River.

5.3. Comparison with the Changjiang River and tributaries

The annual concentration of PAP was by far the highest ob-
served in various tributaries in the Changjiang River (Table 2). All
other variables were within the ranges of reported values, but con-
centrations of NO�3 –N, PN, and TP were in the top 2. Both dissolved
N and TN were also at the high end of the range. All dissolved con-
centrations were lower than those reported for the polluted Tuoji-
ang River (Table 2). Concentrations of DN and DP were both similar
to those in the Fujiang, Minjiang, Jialingjiang, Xiangjiang, and Han-
jiang Rivers (Table 2). Nitrate concentrations were similar to that of
the Minjiang and Hanjian Rivers. These three variables were also
comparable to annual concentrations reported for the Chiangjiang
River by Liu et al. (2003; Table 2). In comparison, NHþ4 –N was high,
second only to that in the Tuojiang River (Table 2).

Similar to the Changjiang system (i.e., Liu et al., 2003; Shen
et al., 2003; Shen and Liu, 2009), the export fluxes of various forms
of nutrients in the Longchuanjiang were mainly controlled by river
water flow (Appendices a and b). The areal export rates of TN, DN,



Table 1
Nutrient transported by the upper Longchuanjiang River, China (2008 considered due to samples largely taken in this year).

TN DN NHþ4 –N NO�3 –N PN DP PAP TP

Annual (�103 kg/yr)a 765 553 264 357 212 8 533 541
Annual (�103 kg/yr)b 428 7 1080 1087
Areal export rate (kg/km2/yr) 548.9 309.5 147.7 199.7 239.4 3.9 604.0 607.9

nd means the calculation could not be determined because of the poor relationship between the variables and stream discharge.
a Determined via interpolation method.
b Determined via extrapolation method.

Fig. 4. Scatter plots between nutrients and water discharge in the Longchuanjiang River, China (p < 0.01) (other variables showing poor relations with water discharge are not
listed).
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Table 2
Comparison of the annual mean nitrogen and phosphorus concentrations in the upper Longchuanjiang River with other tributaries of the Changjiang Ricer and other Rivers, China
(unit in lg/l).

Tributaries NO�3 –N NHþ4 –N DN TN PN DP PAP TP Reference

Longchuanjiang 1037 835 1672 1935 263 33 609 642 This study
Yalongjiang 182 10 259 281 22 10 3 13 Shen and Liu (2009)
Daduhe 426 231 1000 1018 18 10 9 19 Liu et al. (2003)
Minjiang 1060 64 1463 1473 10 38 9 47 Shen and Liu (2009)
Tuojiang 5656 2394 10,332 10,345 13 716 37 756 Liu et al. (2003)
Fujiang 1296 392 2005 2911 906 37 43 81 Liu et al. (2003)
Jialingjiang 682 147 1067 1077 10 39 7 46 Shen and Liu (2009)
Wujiang 1287 11 1779 1856 77 214 16 230 Liu et al. (2003)
Xiangjiang 777 150 1166 1417 251 26 16 42 Liu et al. (2003)
Hanjiang 1036 92 1443 1466 22 29 11 41 Shen and Liu (2009)
Ganjiang 559 48 791 900 109 17 15 32 Liu et al. (2003)
Changjiang 984 52 1190 43 Liu et al. (2003)
Changjiang (Datong) 805 136 Shen and Liu (2009)
Huanghe (Lijin) 1420 644 Shen and Liu (2009)
Zhujiang (Gaonu) 658 17 Duan and Zhang (1999)

Table 3
The areal export rates (kg/km2/yr) of N and P species in the Longchuanjiang River and tributaries in the Changjiang River, China.

TN DN NHþ4 –N NO�3 –N PN DP PAP TP References

Loungchuanjiang 548.9 309.5 147.7 199.7 239.4 3.9 604.0 607.9 This Study
Changjiang Min 31.8 13.9 3.5 4.9 11.9 5.6 1.1 6.5 Liu et al. (2003)

Max 774.2 697.2 51.1 595.0 511.0 26.4 8.7 32.2
Mean 505.4 467.6 20.0 379.4 37.2 15.8 4.7 22.9

Changjiang 1575.0 963.4 160.9 795.1 611.6a 12.6 57.7 70.3 Shen and Liu (2009)
Yalongjiang 140.7 123.9 5.6 84.3 16.8 4.7 2.3 7.1 Liu et al. (2003)

431.2 157.3 40.0 115.1 273.9a 3.9 52.1a 56.0 Shen and Liu (2009)
Minjiang 998.3 991.9 44.1 718.2 6.4 25.5 6.1 31.6 Liu et al. (2003)

1070.8 522.6 76.3 437.4 548.2a 5.7 66.9a 72.6 Shen and Liu (2009)
Tuojiang 5302.6 5299.0 1012.2 3064.6 3.6 372.9 6.1 379.0 Liu et al. (2003)
Jialingjiang 898.4 893.5 101.1 582.4 4.9 21.2 3.3 24.5 Liu et al. (2003)

1188.1 587.4 97.6 479.6 600.7a 3.8 50.4a 54.2 Shen and Liu (2009)
Wujiang 848.7 751.6 4.0 560.0 97.0 49.2 17.5 66.7 Liu et al. (2003)

1618.7 748.2 59.5 685.5 870.5a 5.7 79.7a 85.4 Shen and Liu (2009)
Xiangjiang 1134.8 934.6 119.8 623.0 200.2 20.8 12.3 33.2 Liu et al. (2003)
Hanjiang 571.2 559.3 21.7 400.4 11.9 14.6 4.6 19.2 Liu et al. (2003)

803.9 424.7 144.8 272.1 379.2a 4.8 17.4a 22.2 Shen and Liu (2009)
Ganjiang 707.4 618.5 9.5 457.8 88.9 13.6 12.2 25.9 Liu et al. (2003)

a Value was calculated in this paper as the residual of reported data in the original work. Liu et al., 2003, data from one cruise in April–May, 1997. Shen and Liu, 2009, data
from two cruises in November 1997 and October 1998 (DN was replaced by DIN, while DP by DIP).
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NO�3 –N and DP in the Longchuanjiang River were much lower than
in Changjiang’s tributaries. The data however showed that the
Longchujiang River was an important source of PAP and NHþ4 –N
to the Changjiang River (Table 3). By comparison, NHþ4 –N
(148 kg/km2/yr) was 7-fold higher that the Changjiang in normal
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discharges from adjacent Chuxiong county in the upper catchment.
However, the areal export rate of NO�3 –N was generally smaller
than the average in the Changjiang (Table 3; 420 kg/km2/yr during
1980–1981) (Edmond et al., 1985), and only comparable to 237 kg/
km2/yr during 1985–1988 (Zhang, 1999). Similarly, the areal ex-
port rate of DP in the Longchuanjiang River (3.9 kg/km2/yr) was
substantially lower than the values previously reported on the
Changjiang River (9 kg/km2/yr, Zhang, 1996; 12.6 kg/km2/yr, Shen
and Liu, 2009; 15.8 kg/km2/yr, Liu et al., 2003; 21.1 kg/km2/yr,
Edmond et al., 1985).

5.4. Data quality

For the variables strongly associated with water discharge the
extrapolation method yielded nearly a twofold higher estimate of
annual fluxes than interpolation method (Table 1). Of concern is
that most estimates of nutrient fluxes on large rivers in the area
are based on only a limited number of samples, thus assumption
of a constant nutrient concentration in a long time was needed
(i.e., Duan et al., 2000, 2008; Shen et al., 2003; Shen and Liu,
2009). Inadequate sampling may be one reason for the great dis-
parity in annual nutrient export estimates for the Changjiang River
and tributaries (Table 3). Moreover, many studies have collected
samples from a stationary depth (i.e., not depth integrated, often
from a water depth of 50 cm) and from one single point, often in
the centerline of the river. Such sampling was probably not accu-
rate for estimating particulate concentrations because of vertical
distribution of suspended sediment. These methodological errors
could also produce, in part, substantial errors in the calculation
of PN and PAP yields (Table 3). These potential flaws in previous
sampling methodology which was driven by convenience and bud-
get restrictions need to be recognized. Thus, there is an urgent
need for new sampling programs to include high-temporal-resolu-
tion measurements (daily) in the estimation of annual loads of dis-
solved and particulate constituents.
6. Conclusion

Dissolved N and particle-associated P were the major forms of
nitrogen and phosphorus in the Longchuanjiang River. Particulate
nitrogen and phosphorus loads showed remarkable seasonality be-
cause of the high correlations between measured concentrations
and stream discharge. In contrast, dissolved N and P variables dis-
played less seasonality. Annual TN and TP loads were 981 and
1087 Mg/yr, which is equivalent to about 549 and 608 kg/km2/yr,
indicating the importance of the Longchuanjiang River as a poten-
tial source N and P entering the Changjiang River, for which esti-
mated yields are 141–5303 kg/km2/yr and 7–85 kg/km2/yr,
respectively. The concentrations of TN, NHþ4 –N and TP were much
higher in the Longchuanjiang River than in the Changjiang River
and its tributaries, and the high element ratios of DN:DP suggested
potential P limitation for phytoplankton growth, which was similar
to the Changjiang River. Furthermore, they exceeded the limits for
use for domestic or recreational purposes by Chinese standards.
The relatively high P and N loads portend the potential for algal
bloom formation in sections of the river now changing into cas-
cades of reservoirs, as a result of development hydroelectric facil-
ities. Better estimates of annual loads/fluxes N and P variables
could have been improved with more frequent sampling-for exam-
ple, daily instead of monthly, particularly for particulate variables
and/or during the high-flow period. Finally, our difficulties in
obtaining accurate estimates call to question the accurateness of
the estimates of most other sampling programs in the region.
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Appendix A

See Figs. a–c and Table A1.
Table A1
Maximum limits for several grades of water usage in China (GB3838-2002; CSEPB,
2002b). Median measured NHþ4 —N, TN, and TP concentrations (n = 19) were 0.77, 1.8,
and 0.32, respectively.

Variables Grade I Grade II Grade III Grade IV Grade V

NHþ4 —N (mg/l) 0.15 0.5 1 1.5 2
TN (mg/l) 0.2 0.5 1 1.5 2
TP (mg/l) 0.02 0.1 0.2 0.3 0.4

Grade I: Clean water from headwater and national conservation area that can be
used for domestic purposes after simple disinfecting, for recreational purposes and
irrigation.
Grade II: Fairly clean water that can be used as domestic water after treatment, for
recreational purposes, for fish farming etc, and the area is strictly protected.
Grade III: Water also can be used for domestic, recreational purposes after suitable
treatment.
Grade IV: Polluted water which can only be used as industrial water after
treatment.
Grade V: Heavily polluted water that should not be used at all.
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