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ABSTRACT

A spurious wavelike pattern in the monthly rain day statistics exists within the National Centers for Envi-
ronmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis precipitation prod-
uct. The anomaly, which is an artifact of the parameterization of moisture diffusion, occurs during the winter
months in the Northern and Southern Hemisphere high latitudes. The anomaly is corrected by using monthly
statistics from three different global precipitation products from 1) the University of Washington (UW), 2) the
Global Precipitation Climate Project (GPCP), and 3) the Climatic Research Unit (CRU), resulting in three slightly
different corrected precipitation products. The correction methodology, however, compromises spatial consistency
(e.g., storm tracking) on a daily time scale. The effect that the precipitation correction has on the reanalysis-
derived global land surface water budgets is investigated by forcing the Variable Infiltration Capacity (VIC)
land surface model with all four datasets (i.e., the original reanalysis product and the three corrected datasets).
The main components of the land surface water budget cycle are not affected substantially; however, the increased
spatial variability in precipitation is reflected in the evaporation and runoff components but reduced in the case
of soil moisture. Furthermore, the partitioning of precipitation into canopy evaporation and throughfall is sensitive
to the rain day statistics of the correcting dataset, especially in the Tropics, and this has implications for the
required accuracy of the correcting dataset. The output fields from these long-term land surface simulations
provide a global, consistent dataset of water and energy states and fluxes that can be used for model intercom-
parisons, studies of annual and seasonal climate variability, and comparisons with current versions of numerical
weather prediction models.

1. Introduction

Offline computer simulations of continental- and
global-scale water balances are valuable for studying
climate variability/change and the hydrological impli-
cations thereof. The lack of consistent, long-term ob-
servations of land surface water states and fluxes over
large spatial scales means that the use of such simula-
tions for determining variability in the major compo-
nents of the hydrological cycle is an attractive alter-
native. Conversely, the relative wealth of observations
of the atmosphere and sea surface means that a number
of global, long-term, near-surface atmospheric analyses
exist; for example, the National Centers for Environ-
mental Prediction–National Center for Atmospheric Re-
search (NCEP–NCAR) reanalysis (Kalnay et al. 1996;
Kistler et al. 2001), the NCEP–Department of Energy
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(DOE) reanalysis (Kanamitsu et al. 2002), and the Eu-
ropean Centre for Medium-Range Weather Forecasts
(ECMWF) reanalysis (Gibson et al. 1997). These anal-
yses assimilate observed atmospheric and sea surface
states into an atmospheric forecast model to obtain glob-
al coverage of surface meteorology that can then be used
to force land surface models to generate global, sub-
daily, datasets of land surface water and energy fluxes
and states. Although these model-derived forcing fields
may not be perfect, they are self-consistent and are used
by many to model the land surface water and energy
balances.

The NCEP–NCAR reanalysis provides long-term,
near-surface meteorological data (e.g., precipitation,
temperature, wind speed, vapor pressure, radiation) at
the high temporal resolution (daily and higher) required
by land surface models. However, the structure of the
atmospheric model used in the reanalysis assimilation
system introduces systematic errors into some reanalysis
fields, particularly at high latitudes and other regions
where observations are scarce. Some analysis variables,
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such as precipitation, are generated entirely by the mod-
el without assimilation of observational data and are
therefore dependent on the model parameterizations. As
such, the precipitation data are acknowledged to be
somewhat unreliable at regional and subseasonal scales
(Kalnay et al. 1996), although comparisons with inde-
pendent observations and with several climatologies
show that the data contain useful information at seasonal
to annual scales (Kalnay et al. 1996; Janowiak et al.
1998; Kistler et al. 2001).

Figure 1 shows the seasonal average number of rain
days of the NCEP–NCAR reanalysis for the period
1948–98. At the global scale the spatial patterns of rain
days and precipitation seem reasonable with high values
in the Tropics that follow the seasonal undulation of the
intertropical convergence zone (ITCZ) and lower values
in the mid- and high latitudes and the distinctive desert
regions in Africa, the Middle East, and Australia, among
others. However, a noticeable wavelike pattern (alter-
nating zones of high and low) exists in the high northern
latitudes for both the number of wet days and to a lesser
extent for the precipitation totals (not shown). This pat-
tern, also reported by Cullather et al. (2000), is most
apparent in the winter months of the Northern Hemi-
sphere, reduces somewhat in the spring and autumn, and
disappears in the summer months. A similar anomaly,
not shown (over ocean), exists in high southern latitudes
during the Southern Hemisphere winter.

In this paper the uncertainty in the daily variability
of the reanalysis precipitation is assessed by comparison
with three other global precipitation datasets: 1) the 15-
yr dataset developed by the surface water modeling
group at the University of Washington (UW), 2) the
1997–99 Global Precipitation Climatology Project
(GPCP) product, and 3) the Climatic Research Unit
(CRU) 98-yr dataset. A methodology for correcting the
anomaly in the NCEP–NCAR dataset using the monthly
statistics from another precipitation dataset is presented.
The correction method is applied to the NCEP–NCAR
dataset using monthly statistics from each of the three
comparison datasets. Motivation for this study is the
creation of a global, multidecade, terrestrial, meteoro-
logical forcing dataset to drive land surface model sim-
ulations of the global water and energy balance. There-
fore, the effect of the correction is discussed in terms
of the land surface water budget by analyzing long-term
simulations using the Variable Infiltration Capacity
(VIC) land surface model.

2. Precipitation datasets

a. NCEP–NCAR reanalysis

The NCEP–NCAR reanalysis (referred to hereafter as
the NCEP reanalysis) is a retrospective global analysis
of atmospheric and surface fields extending from 1948
to the near present (Kalnay et al. 1996, Kistler et al.
2001). Available observations are assimilated into a

global atmospheric spectral model implemented at a
horizontal resolution of T62 (approximately 210 km)
and with 28 sigma vertical levels. The reanalysis is cre-
ated using a ‘‘frozen’’ version of the data assimilation
system, although assimilated observations are subject to
changing observing systems. Consistent gridded output
fields are generated continuously in space and time and
are classified according to how they are determined and
their reliability. Class ‘‘A’’ variables are strongly influ-
enced by assimilated observations and are therefore re-
garded as being the most reliable fields. These fields
include upper-air temperatures, rotational wind, and
geopotential height. Less reliable are class ‘‘B’’ vari-
ables such as moisture, divergent wind, and surface pa-
rameters, which are influenced by observations and the
model. Class ‘‘C’’ variables such as surface fluxes and
heating rates are completely determined by the model
and as such are the least reliable. Precipitation is clas-
sified as a class C variable.

b. UW’s daily dataset

The University of Washington surface water model-
ing group precipitation dataset (Nijssen et al. 2001a)
covers a 15-yr (1979–93) time period at 28 resolution.
Daily observations from 7800 stations from the Climate
Prediction Center (CPC) global dataset are used to
downscale the monthly precipitation datasets of Hulme
(1995) and the Global Precipitation Climatology Project
(Huffman et al. 1997). Aggregation from station data
to 28 resolution is carried out using inverse distance
square weights based on the distance from each station
to the center of each of the 16 0.58 subcells. The final
28 value is the mean of the 16 subcells. In areas where
station data are sparse, daily series were generated using
a stochastic model consisting of a two-state (wet/dry)
first-order Markov chain for precipitation occurrences
and a two-parameter gamma distribution for intensities.
The parameters are initially estimated from the data de-
rived where station data are available and then inter-
polated to the data sparse regions.

c. CRU’s monthly dataset

The Climatic Research Unit product is a 0.58 gridded
dataset of monthly terrestrial surface climate variables
for the period of 1901–98 (New et al. 1999, 2000). The
spatial coverage extends over all land areas, including
oceanic islands but excluding Antarctica. Fields of
monthly climate anomalies, relative to a 1961–90 cli-
matology, were interpolated using thin-plate splines
from surface climate data. The anomaly grids are then
combined with the 1961–90 climatology resulting in
grids of monthly climate over the 98-yr period. Primary
variables (precipitation, mean temperature, and diurnal
temperature range) are interpolated directly from station
observations. The remaining secondary climatic ele-
ments (including rain day frequency) are interpolated
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FIG. 1. Seasonally averaged monthly rain days over the period 1948–98 for the NCEP–NCAR reanalysis showing the spurious pattern in
the high latitudes of the Northern Hemisphere in the nonsummer months.

from merged datasets comprising station observations
and, in regions without station data, synthetic data es-
timated using predictive relationships with the primary
variables.

d. GPCP’s daily dataset

The Global Precipitation Climatology Project is a
central element of the World Climate Research Program
(WCRP 1990; Huffman et al. 1997), providing a daily
precipitation product for the period 1997–99 at 18 res-
olution (Huffman et al. 2001). The data are based on a
combination of precipitation estimates from a merged
satellite IR dataset over 408N–408S and a rescaling of
the Susskind et al. (1997) TIROS Operational Vertical
Sounder (TOVS) satellite estimates at higher latitudes.
Both contributing estimates are scaled to match the
GPCP version 2 monthly satellite–gauge dataset totals
(Huffman et al. 1997). Rain day frequencies of the IR-
based estimate are adjusted to match data from the Spe-
cial Sensor Microwave Imager (SSM/I) retrieval. The
TOVS-based rain day frequencies are adjusted to the
IR-based estimate at 408N and 408S separately.

e. Spatial resolution and temporal coverage

To carry out intercomparisons, all datasets were in-
terpolated to a spatial resolution of 28 using bilinear

interpolation over their common spatial coverage of ter-
restrial areas excluding Greenland and Antarctica. Al-
though previous studies have reported that the high-
latitude anomaly in precipitation can be smoothed
through interpolation (Cullather et al. 2000; Serreze and
Hurst 2000), Fig. 1 shows that the anomaly is still ev-
ident in the rain day frequencies after interpolation.
There is no single common time period among the four
precipitation datasets, so comparison of any two datasets
is carried out over their common overlap period. The
final corrected precipitation datasets were generated at
28 resolution for 1948–98, this being the common time
period of the NCEP and CRU datasets and the CRU
dataset being used to scale the corrected precipitation
monthly totals as described in section 4.

3. The NCEP–NCAR high-latitude anomaly

The anomaly results from the formulation used for
the moisture diffusion in the atmospheric model of the
NCEP–NCAR reanalysis system (Kistler et al. 2001;
NCEP–NCAR reanalysis information available online
at http://wesley.wwb.noaa.gov/reanalysis.html). The re-
sulting spurious moisture sink/source creates unrealis-
tically large or small amounts of precipitation and is
sensitive to elevation and high latitudes where the spe-
cific humidity is low in comparison with the global-
average specific humidity. A more accurate approxi-
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FIG. 2. Seasonally averaged monthly rain days for DJF for (a) the NCEP and CRU datasets for the period 1948–98, (b) the NCEP and
the UW datasets for the period 1979–93, and (c) the NCEP and the GPCP datasets for the period 1997–98.

mation of moisture diffusion has been introduced in the
next version of the NCEP reanalysis (Kanamitsu et al.
2002), which has corrected the problem. Regardless, the
methodology presented in this paper can be applied to
this new reanalysis, or any other dataset, to correct any
other biases that are revealed.

A comparison of the mean monthly number of rain
days of the NCEP reanalysis with the UW, CRU and
GPCP datasets is shown in Fig. 2 for the Northern Hemi-
sphere winter months, December–February (DJF). The
values are determined for a period of time corresponding
to the overlap of the NCEP dataset with the comparison
dataset (CRU: 1948–98, UW: 1979–93, GPCP: 1997–

98). From a global perspective, the four datasets are
largely similar; however, some important regional dif-
ferences exist. Most prominent is the high-latitude
wavelike anomaly in the NCEP reanalysis. Furthermore,
the NCEP reanalysis has more wet days in the Tropics
than any of the other datasets, although the GPCP da-
taset is somewhat similar. The subtropical dry areas
compare well between the NCEP reanalysis and each
of the other datasets. The high latitudes in the Northern
Hemisphere have more wet days in the NCEP reanalysis,
most notably in northeast Asia and the northwest and
northeast of North America. Similar biases are also ev-
ident in all other seasons (not shown), although the high-
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FIG. 3. Time series of average monthly rain days over the period
1979–93 for the continents for the NCEP, CRU, and UW datasets.

latitude wavelike anomaly is not apparent in the North-
ern Hemisphere summer months.

Figure 3 shows the time series of the mean monthly
number of rain days for each continent for the common
period of all datasets (1979–93) except for the GPCP
dataset, which is not shown as it only overlaps the period
1997–98. In general, the NCEP rain day means are high-
er than those of the UW dataset, which are in turn higher
than the CRU dataset. The exceptions to this are Oce-
ania, for which the NCEP and UW values are similar
except for the early part of the year, and South America,
where the UW and CRU values match well.

4. Correction of the NCEP reanalysis high-latitude
anomaly

a. Correction method

The correction of the anomaly in the NCEP precip-
itation may be divided into a number of steps: 1) the
systematic identification of the grid cells to be corrected,
2) the correction of the NCEP precipitation values for
each of these grid cells using the monthly statistics of
one of the other precipitation datasets, and 3) scaling
of the monthly precipitation totals to match those of the
CRU dataset.

1) STEP 1: IDENTIFY THE GRID CELLS TO BE

CORRECTED

To decide which grid cells are to be corrected, a sta-
tistical test is carried out to determine whether the NCEP
dataset is statistically similar to the comparison dataset
or not. A Z statistic (based on proportion) is computed
for each cell, and this is used to test the null hypothesis
that the number of rain days in the NCEP dataset and
the comparison dataset are equal. This is repeated for
each of the three comparison datasets (CRU, UW, and
GPCP). The statistic is calculated based on the total
number of rain days for any given month:

p 2 p1 2Z 5 , (1)
Ïp(1 2 p)(1/n 1 1/n )1 2

where p1 is the number of rain days in the NCEP dataset,
p2 is the number of rain days in the comparison dataset,
n1 is the total number of days in the NCEP dataset, n2

is the total number of days in the comparison dataset,
and p is the pooled estimate for the common population
proportion:

n p 1 n p1 1 2 2p 5 . (2)
n 1 n1 2

2) STEP 2: CORRECT THE DAILY PRECIPITATION

FOR INCONSISTENT GRID CELLS

The aim of the correction is to force the rain day
statistics of the NCEP data to match those of the com-
parison dataset by using the monthly wet–wet and dry–
dry conditional probabilities of the comparison dataset.
These probabilities are used within a first-order Markov-
type process (Wilks and Wilby 1999) to make decisions
on whether the NCEP precipitation on a certain day is
of the correct type (wet or dry) in relation to the previous
day. The correction algorithm is applied separately for
each grid cell and is as follows. To begin, the first day
of the NCEP precipitation time series is accepted as
being correct. The type of the next day is generated at
random using the conditional probabilities of the cor-
recting dataset for the current month and grid cell. If
the type of the original NCEP day matches the type of
the randomly generated day, then the NCEP precipita-
tion value is accepted. If it does not match, then a day
of the appropriate type (wet or dry) is selected at random
from the total population of all days of this type in the
NCEP dataset for the current month and grid cell. This
is repeated for every day in the time series.

The conditional probabilities cannot be calculated for
the CRU product, as it is a monthly dataset. Therefore,
these are generated by sampling from the archive of
UW conditional probabilities for months that have the
same rain day frequency as the CRU dataset. For some
months, a matching rain day frequency may not exist
in the UW archive, so a monthlong time series of wet
and dry days was repeatedly generated at random until
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it matched the CRU rain day frequency and the con-
ditional probabilities were then calculated from this.

3) STEP 3: SCALE THE MONTHLY TOTALS

Although the correction method described in the pre-
vious section ensures that the number of rain days in
the NCEP dataset is consistent with the correcting da-
taset, it ignores the consistency of the precipitation to-
tals. Inconsistent dry days are corrected by replacement
with a rain day chosen at random without regard to the
precipitation total for the chosen day. This is likely to
introduce errors in the monthly precipitation totals that
are in addition to the biases that are seen in the precip-
itation totals of the original NCEP dataset (Trenberth
and Guillemot 1998; Kistler et al. 2001). Therefore, in
step 3 of the correction method, the NCEP-corrected
daily totals are scaled by the ratio of the monthly totals
of the CRU and the NCEP-corrected datasets so that the
NCEP-corrected monthly totals match those of the CRU
dataset. This simple scaling method can potentially pro-
duce unreasonably high daily precipitation values when
the unscaled daily value is an outlier and the CRU
monthly precipitation is much higher than the NCEP
precipitation. Such situations are localized and generally
occur at the limits of desert regions and at the edge of
large-scale climate phenomena with strong seasonal cy-
cles such as the ITCZ. In these regions, relatively small
differences between the NCEP and CRU datasets in the
location and seasonal variation of these large-scale fea-
tures can lead to large monthly precipitation ratios at
the grid scale. Although the occurrence of unreasonably
high daily values is rare and localized, a more robust
method of scaling the data to match observed monthly
totals would have to be employed in any final version
of the corrected dataset.

b. Consistency of related variables

Correcting the precipitation field may result in the
related near-surface meteorological variables in the
NCEP reanalysis being inconsistent with the corrected
precipitation. For example, if a dry day is changed to
a wet day, then the original solar radiation for this day
may be for a clear day. Therefore, as part of the cor-
rection method, the related variables were changed for
the same days for which the precipitation was corrected,
including wet days that are changed to dry days, en-
suring that the dataset is self-consistent.

5. Correction results

The NCEP daily precipitation is corrected with the
above methodology using the statistics from each of the
three datasets (CRU, UW, and GPCP), resulting in three
slightly different corrected precipitation datasets. As the
UW and GPCP datasets do not overlap the 1948–98
period completely, the mean monthly conditional prob-

abilities for these datasets are applied repeatedly for all
years. This assumes that the mean monthly statistics for
the overlap period are representative of the whole 49
years.

a. Grid cells corrected

The Z statistic was calculated with Eq. (1) for the
NCEP dataset and the three comparison datasets over
the time periods common to each pair of datasets and
an example of the results using the UW statistics are
shown in Fig. 4. The unshaded areas indicate where the
NCEP data are statistically similar to the comparison
dataset. The shaded areas indicate where the NCEP da-
taset has significantly more (dark gray shading) or less
(light gray shading) rain days, based on a 75% confi-
dence level (equivalent to a p value of 61.28). It is the
data values from these shaded areas that are corrected.
The maps highlight the aforementioned differences in
rain day frequencies, including the spurious wavelike
pattern in the NCEP dataset in the winter months and
the significantly higher number of wet days in the NCEP
than the UW (and CRU) datasets over much of the
globe. The comparison with the GPCP dataset (not
shown) shows a closer match in general, which may be
due to the GPCP rain days being based on satellite grid
values as opposed to gauge data that may tend to un-
derestimate the frequency of rain. However, the short
time period (3 yr) of the GPCP dataset results in a weak
statistical test and therefore the worth of the comparison
is unknown.

b. Corrected datasets

An example of the results of the correction is shown
in Fig. 5. This is the seasonally averaged number of
rain days for the Northern Hemisphere winter (DJF) for
the UW dataset and the corresponding corrected dataset.
The corrected precipitation dataset resembles the cor-
responding correcting dataset, which is desirable and to
be expected as the correction method is designed to
force the statistics of the two datasets to match. The
results for the other seasons and correcting datasets
(CRU and GPCP) similarly show good matches. In ad-
dition to correcting the high-latitude rain day anomaly,
differences that occur elsewhere are also removed. For
example, in the Tropics the high numbers of rain days
in the NCEP dataset are reduced to the levels found in
the CRU and UW datasets. This is illustrated more clear-
ly in Fig. 6, which shows a scatterplot of the NCEP
average monthly number of rain days versus that for the
CRU, UW, and GPCP datasets and their respective cor-
rected versions for the six continents. The corrected
datasets are similar to the corresponding correcting da-
taset for both the CRU and UW with some slight dif-
ferences most evident for the UW dataset over Europe
and Oceania. In the case of the GPCP dataset, the cor-
rected data are generally closer to the GPCP dataset
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FIG. 4. Global Z statistic [Eq. (1)] indicating the statistical similarity between the mean monthly
number of rain days of the NCEP dataset and UW dataset for Jan and Jul. The values of 61.28
are the critical levels of the Z statistic in a two-tailed test at a 75% confidence level.

than to the NCEP dataset, yet there are still large dif-
ferences for most continents. In any case, the monthly
statistics of the corrected dataset will never be identical
to those of the correcting dataset because of the sto-
chastic nature of the correction method. How well they
match depends also on the difference between the NCEP
and correcting dataset and the threshold (or confidence
level) of the statistical test for determining if a grid cell
requires correction.

6. Discussion

a. Choice of correcting dataset

The correction method may be applied using the sta-
tistics from any dataset and each of the datasets used

here (CRU, GPCP, and UW) may be equally valid for
correcting the high-latitude anomaly. However, the
methods used to construct each dataset results in dif-
ferences in the rain day statistics that are regionally and
seasonally variable. Deciding on which dataset to use
for correcting the NCEP precipitation may be somewhat
subjective, but certain factors may influence the deci-
sion. The accuracy of the dataset is perhaps of greatest
importance and this is highly dependent on the methods
and observations used to construct the datasets. The
accuracy of the UW and CRU datasets is highly de-
pendent on the density of stations and methods used to
interpolate to the grid scale. Low station density will
tend to give an underestimation of precipitation occur-
rence in a grid, especially when convective precipitation
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FIG. 5. Seasonally averaged monthly rain days for DJF over the period 1948–98 for the UW
dataset and the NCEP dataset corrected with the UW monthly statistics.

dominates as in humid regions in summer months (New
et al. 2000). The GPCP dataset relies on satellite data
sources, which have much more uniform and consistent
spatial coverage and may give better estimates at grid
scales. The temporal extent of the dataset is also an
important factor. A dataset with long temporal overlap
with the NCEP dataset would likely provide a better
representation of interannual variability and any trends
over the 50-yr period than a mean monthly climatology
based on fewer years. For the GPCP dataset (1997–99),
the level to which the average monthly statistics are
representative of the full time period (1948–98) is un-
known. The CRU dataset may be more representative,
by providing rain day frequencies and monthly totals
for the whole time period, but it is of concern that

monthly conditional probability statistics had to be gen-
erated from the UW dataset. In the end, it may be that
a hybrid of these datasets would provide the best esti-
mate.

b. Loss of spatial coherence and storm tracking

Because the correction method is carried out individ-
ually for each grid cell, spatial coherence between
neighboring cells may be lost. For example, during cor-
rection, the precipitation at one grid cell may be replaced
with precipitation from a day chosen at random from
the population of appropriate days (wet or dry). How-
ever, the precipitation in an adjacent cell may not be
replaced with data from the same day, if it is replaced
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FIG. 6. Scatterplot of the NCEP average monthly number of rain
days vs that for the comparison datasets (CRU, UW, and GPCP)
(closed symbols) and the NCEP dataset corrected with each of the
comparison datasets (open symbols) for the six continents.

at all, thereby losing spatial coherence between the two
cells. For storm systems that span multiple grid cells,
there may be a loss of spatial structure. Although this
may not have major consequences on the mean precip-
itation over time and space scales larger than that of the
storm, the effects at smaller spatial scales may be more
profound. The passing of the storm over an area may
be interrupted by the insertion of dry days into the con-
tinuous sequence of rain days. If the corrected dataset
is to be used to force simulations of the land surface
hydrology, this has potential effects on the dynamics of
soil moisture and the occurrence of droughts and floods
at the small scale. Figure 7 shows an example of the
loss of storm tracking and spatial consistency for a se-
quence of four daily snapshots over North America. As
large-scale weather systems move from west to east,
their general features are retained in the corrected da-
taset but noise has been introduced. At the scale of an
individual grid, the continuous sequence of rain days as
a storm system passes over is disrupted by days of no
precipitation. The opposite effect can occur over areas
experiencing a period of dry weather.

c. Temporal persistence in related variables

The related meteorological variables are resampled
for the same days as the precipitation to ensure consis-
tency (section 4b). However, this may lead to a potential
loss in the temporal persistence (lag-1 autocorrelation)
in these variables because days are replaced at random
without regard for the weather on preceding or follow-
ing days. As an example, Table 1 shows the daily lag-
1 autocorrelations averaged over 308 latitude bands for
Asia for the NCEP dataset and the corrected dataset
(using the CRU wet day frequencies). For both datasets,
autocorrelations are lowest for precipitation and wind

speed, which is to be expected given the intermittent
nature of storms and changes in wind speed at daily
time scales. Values are high for most other variables,
especially temperature, as they are dominated by the
seasonal solar cycle, which tends to increase autocor-
relation.

The reduced autocorrelation for precipitation in the
corrected dataset is a result of the random sampling of
wet days, which tends to break up multiday storms. As
a result, the autocorrelation values for the other variables
are also reduced in the corrected dataset but the extent
to which this happens varies by type of variable and
latitude band. Some of the largest differences occur in
the Tropics for nearly all variables, and smaller differ-
ences are seen in higher latitudes. The exceptions to this
are wind speed, which has significantly reduced auto-
correlation in all regions, and surface pressure, which
exhibits small differences in the Tropics due to the dom-
inance of the Asian monsoon, and larger differences at
higher latitudes where autocorrelations are less affected
by the smaller seasonal variations.

Although it is apparent that there is a general loss in
temporal persistence in all variables due to the correc-
tion, it is not clear whether the original NCEP lag-1
autocorrelations are realistic. As the NCEP dataset has
incorrect autocorrelations because of the rain day prob-
lem, these will spill over into the other variables because
of the correlation between them. Therefore, it can be
argued that the correction method may reduce any au-
tocorrelation bias in these variables while maintaining
physical consistency among variables.

d. Effects on the land surface water budget

The motivation for correcting the NCEP precipitation
is to generate long-term global fields of water and en-
ergy states and fluxes, which entails forcing state of the
art land surface schemes with the best estimate of pre-
cipitation and surface meteorology available. The meth-
ods presented in this study combine observation-based
global datasets with reanalysis datasets in order to obtain
the best forcing dataset at the highest spatial and tem-
poral scales possible. However, it is important to un-
derstand how the choice of dataset and methods used
to construct such forcings affect the simulated land sur-
face water budget. If the water budget is sensitive to
the differences in these forcing datasets and the methods
used to combine the data, then such simulations will
only add to the uncertainty in our understanding of the
land surface water cycle.

To examine this, a number of experiments were con-
ducted by forcing the VIC land surface model (Nijssen
et al. 2001a,b; Wood et al. 1997; Maurer et al. 2001)
with each of the three corrected precipitation datasets,
the NCEP dataset, and the NCEP dataset scaled to match
the CRU monthly totals. These simulations are denoted
as VICCRU, VICUW, VICGPCP, VICNCEP, and VICNC-

EPpSCALED. In addition to precipitation, the VIC model
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FIG. 7. A sequence of four daily precipitation (mm day21) maps for (a) the NCEP dataset and (b) the NCEP dataset
corrected with the UW intermonthly statistics. Note the introduction of noise and the loss of storm tracking in the
corrected dataset.

also requires, at the least, the daily maximum and min-
imum surface air temperature and wind speed, which
were derived from the NCEP dataset and made consis-
tent with the corrected precipitation as described in sec-
tion 4c.

1) EFFECT OF THE NCEP HIGH-LATITUDE

ANOMALY

Without correction of the biases and anomalies seen
in the NCEP precipitation, the validity of using the
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TABLE 1. Lag-1 autocorrelations for the NCEP dataset and the
corrected dataset (using the CRU wet day frequencies). Autocorre-
lations are averaged over three latitude bands over Asia. Variables
are precipitation (P), air temperature (T ), downward shortwave ra-
diation (SW), downward longwave radiation (LW), specific humidity
(SH), surface pressure (Ps), and wind speed (W).

Dataset P T SW LW SH Ps W

608–908

NCEP
Corrected

0.42
0.16

0.97
0.89

0.97
0.94

0.90
0.80

0.96
0.86

0.83
0.41

0.44
0.22

308–608

NCEP
Corrected

0.45
0.16

0.97
0.91

0.91
0.88

0.91
0.83

0.93
0.82

0.84
0.60

0.45
0.26

08–308

NCEP
Corrected

0.66
0.23

0.94
0.84

0.82
0.65

0.92
0.79

0.92
0.76

0.94
0.81

0.66
0.44

FIG. 8. Average DJF snow water equivalent (mm) for the VIC simulation forced by the NCEP
precipitation.

NCEP dataset for land surface modeling in its native
form is questionable. To illustrate this, an example of
the effect of the high-latitude precipitation anomaly on
the land surface hydrology is given in Fig. 8. This shows
the average DJF snow water equivalent (SWE) for the
VICNCEP simulation. This simulation was forced with the
NCEP dataset in its raw form. The spurious pattern can
clearly be seen in the SWE field in the high northern
latitudes. Results for other land surface variables, such
as evaporation, soil moisture content, and runoff (not
shown), show little at these seasonal scales. This can
be attributed to the fact that, at high latitudes in winter,
the evaporation is very low and significant runoff and
changes in soil moisture will not occur until the onset
of spring melt, by which time the effects of the anom-
alous precipitation have begun to dissipate. The spurious
pattern is of course not seen in the simulations forced
with the corrected precipitation datasets.

2) EFFECT OF DIFFERENT RAIN DAY STATISTICS

The previous section showed that the land surface
reflects the anomalies in the NCEP precipitation in its
raw form and indicates that the correction to the rain
day statistics is required to remove the effects of these
biases. Therefore, it is important to determine the sen-
sitivity of the land surface to the rain day statistics and
to know the effect of the correction using rain day sta-
tistics from different datasets. In the context of large-
scale modeling, the effects on the land surface budget
at continental and global scales are of particular interest.

Table 2 shows the global and continental mean annual
water budget for the VIC simulations. Also shown are
the percentage changes in each of the budget compo-
nents between each simulation and the VICNCEPpSCALED

simulation. All simulations, except the VICNCEP simu-
lation, are forced with precipitation scaled to match the
monthly totals of the CRU dataset and this is reflected
in the equal monthly precipitation totals in Table 2. The
differences between the simulations show the effect of
the choice of correcting dataset and are consistent with
the comparison of rain day statistics shown previously
in which, in general, the CRU dataset showed the largest
differences with the NCEP dataset and the GPCP dataset
showed the least.

The most notable effect on the land surface water
budget is the way in which the precipitation is parti-
tioned into evaporation and runoff. For all simulations
forced with corrected precipitation, the evaporation is
reduced and the excess water appears as a matching
increase in runoff. The decrease in evaporation is mainly
due to a decrease in canopy evaporation. For example,
in North America, the evaporation for the VICCRU sim-
ulation is 28 mm lower than the VICNCEPpSCALED simu-
lation and is matched by an increase of 28 mm in the
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TABLE 2. Global and continental mean annual hydrological budget for the VIC simulations forced with the NCEP dataset with scaled
precipitation (VICNCEPpSCALED) and the three corrected datasets (VICCRU, VICUW, and VICGPCP). Water budget components are precipitation (P),
evaporation (E), runoff (Q), soil moisture content (S), and snow water equivalent (SWE).

VICNCEPpSCALED

Annual mean
Percent
change

VICCRU

Annual mean
Percent
change

VICUW

Annual mean
Percent
change

VICGPCP

Annual mean
Percent
change

P
World
Africa
Asia
Europe
North America
Oceania
South America

771
666
618
632
668
712

1538

0.0
0.0
0.0
0.0
0.0
0.0
0.0

771
666
618
632
668
712

1538

0.0
0.0
0.0
0.0
0.0
0.0
0.0

771
666
618
632
668
712

1538

0.0
0.0
0.0
0.0
0.0
0.0
0.0

771
666
618
632
668
712

1538

0.0
0.0
0.0
0.0
0.0
0.0
0.0

E
World
Africa
Asia
Europe
North America
Oceania
South America

519
562
389
494
447
483
870

0.0
0.0
0.0
0.0
0.0
0.0
0.0

472
523
356
479
419
460
726

29.1
26.9
28.5
23.0
26.3
24.8

216.6

484
543
375
492
434
470
711

26.7
23.4
23.6
20.4
22.9
22.7

218.3

506
555
380
492
444
480
813

22.5
21.2
22.3
20.4
20.7
20.6
26.6

Q
World
Africa
Asia
Europe
North America
Oceania
South America

252
104
229
138
221
229
668

0.0
0.0
0.0
0.0
0.0
0.0
0.0

299
143
262
153
249
252
812

18.7
37.5
14.4
10.9
12.7
10.0
21.6

287
123
243
140
234
242
827

13.9
18.3

6.1
1.4
5.9
5.7

23.8

265
111
238
140
224
232
725

5.2
6.7
3.9
1.4
1.4
1.3
8.5

S
World
Africa
Asia
Europe
North America
Oceania
South America

486
716
391
659
358
347
439

0.0
0.0
0.0
0.0
0.0
0.0
0.0

493
721
397
664
364
356
452

1.4
0.7
1.5
0.8
1.5
2.5
2.9

489
717
394
662
361
351
450

0.7
0.1
0.7
0.5
0.7
1.1
2.5

487
715
394
661
359
348
443

0.3
20.1

0.6
0.3
0.2
0.3
0.9

SWE
World
Africa
Asia
Europe
North America
Oceania
South America

20
0

22
26
55

0
4

0.0
0.0
0.0
0.0
0.0
0.0
0.0

17
0

18
24
43

0
5

216.2
211.6
215.1
26.4

220.7
28.3
10.5

17
0

19
25
45

0
4

214.3
29.4

212.2
24.1

218.0
217.6
23.0

19
0

21
26
51

0
4

24.4
25.3
24.5
20.3
26.3
18.6

0.4

runoff. Canopy evaporation is lower by 101 mm and
this is balanced by increases in transpiration (79 mm),
soil evaporation (4 mm), soil moisture content (6 mm),
and SWE (4 mm). The changes in snow sublimation
and canopy storage are negligible.

Despite the monthly precipitation totals being equal
for these simulations, the differences in the individual
water budget components are quite large, especially in
the partitioning of evaporation between canopy evap-
oration and transpiration. These differences can be ex-
plained by the differences in the monthly number of
rain days and precipitation intensities. The NCEP data
have less low-intensity precipitation and more high-in-
tensity precipitation than the CRU- and UW-corrected

datasets. The fixed capacity of the vegetation canopy in
the VIC model is exceeded by the more intense precip-
itation of the corrected datasets more often than for the
NCEP dataset. The excess water is routed as throughfall
to the soil surface, which reduces the amount of water
available for canopy evaporation and increases the po-
tential for surface and subsurface runoff and transpi-
ration.

3) EFFECT OF LOSS OF SPATIAL COHERENCE

To determine the sensitivity of the land surface to the
potential loss of spatial coherence in the corrected pre-
cipitation, spatial statistics were calculated over the Am-
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FIG. 9. Mean monthly time series of the distribution of the spatial
average and CV of the main components of the land surface water
budget over the Amazon River basin for the VICNCEPpSCALED (black
line) and VICCRU simulations (gray line). The solid line represents
the mean daily value. The upper and lower bars represent the max-
imum and minimum values, while the upper and lower limits of the
boxes are the 75% and 25% quartiles. Units are mm day21 for the
fluxes and mm for the soil moisture. Note the different scales for the
basin average and basin CV for precipitation and soil moisture.

azon River basin for the VICNCEPpSCALED and VICCRU sim-
ulations (see Fig. 9). This illustrates the effect of not
only the differences in the rain day statistics but also
how the loss of spatial coherence of precipitation oc-
currence affects the spatial variability of the land surface
water budget. From Fig. 9, the basin-averaged precip-
itation is approximately the same for both simulations,
which is to be expected, as the monthly precipitation
totals are the same. Differences in the distribution of
the daily basin-averaged values are due to changes made
at the grid scale by the correction method. The CV
values for precipitation for the two simulations show
large differences. The mean coefficient of variance (CV)
values for the VICCRU simulation are higher than those
for the VICNCEPpSCALED simulation, as are, in general, the
maximum and minimum values and the 25 and 75 per-
centiles. This is due to the breaking up of storm systems
and the introduction of ‘‘noise’’ into the corrected pre-
cipitation dataset, which increases both the mean and
the spread of the distribution of spatial variability.

Differences in basin-averaged evaporation are nota-

ble, with the mean VICCRU evaporation values being on
average 21%–42% lower than for the VICNCEPpSCALED

simulation. This is a result of the differential partitioning
of precipitation into canopy evaporation and throughfall
between the two simulations as was seen in the conti-
nental-scale analysis. Evaporation and runoff CV values
tend to mimic the variability in the precipitation forcing,
although the differences for runoff are small. Soil mois-
ture CV values are high relative to the other compo-
nents, which is to be expected at these spatial scales.
However, any changes in variability resulting from
changes in the spatial variability of precipitation are
likely to be dampened because the soil moisture values
are for the total active soil column, which includes deep
moisture storage. Although the spatial variability in the
VICCRU simulation precipitation is higher than for the
VICNCEPpSCALED simulation, the corresponding variability
in soil moisture is actually lower. This may be because
the increased spatial variability in precipitation tends to
produce a higher proportion of saturated or near-satu-
rated soil moisture conditions across the basin and thus
will reduce the spatial variability. This is more likely
in a humid environment such as the Amazon River ba-
sin. The same analysis was carried out for the Missis-
sippi and Mackenzie basins to investigate the effect for
different climates and the results showed similar but
smaller effects.

7. Summary and conclusions

A spurious wavelike pattern exists in the mean month-
ly precipitation and number of rain days of the NCEP
dataset over terrestrial areas in high latitudes in winter.
Comparison with the CRU, GPCP, and UW precipitation
datasets verified the anomaly and other regional biases
in the NCEP precipitation field. The rain day anomaly
was corrected using the monthly precipitation statistics
from each of the three comparison datasets and the re-
sulting daily precipitation values were then scaled so
that their monthly totals matched those of the CRU da-
taset. The monthly statistics of the resulting corrected
datasets match well the statistics of the respective da-
taset used for the correction, but the degree to which it
does this depends on the statistical similarity of the
NCEP and correcting dataset.

In the context of land surface modeling, the need for
the correction is clear, as the high-latitude anomalous
pattern is reflected in the land surface states. A number
of experiments were carried out to investigate the effect
of the correction on the land surface by forcing the VIC
land surface model with the original and corrected
NCEP datasets. The results show that the land surface
water budget is sensitive to the submonthly distribution
of precipitation. Simulations forced with identical
monthly precipitation totals but different rain day sta-
tistics can differ significantly in the partitioning of pre-
cipitation into canopy evaporation and throughfall with
implications for the level of accuracy required of the
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correcting dataset. Ultimately, the choice of the cor-
recting dataset would be based on the level of confidence
in the data and the accuracy of the rain day statistics at
the grid scale. However, attention must also be paid to
the temporal extent of the data and whether it is rep-
resentative of the long-term variability over the multiple
decades of the NCEP dataset period. In the absence of
a single dataset that fulfills these criteria it may be that
a hybrid dataset would have to be used.

A side effect of the correction method is that it in-
troduces a degree of spatial inconsistency in the resul-
tant precipitation fields because it is carried out inde-
pendently for each grid cell. This results in the intro-
duction of ‘‘noise’’ in the spatial pattern of precipitation
and the potential loss of storm tracking at the regional
scale. The spatial variability of water budget compo-
nents appears to be sensitive to the increased spatial
variability in the corrected precipitation field, at least
over the scale of a large river basin such as the Amazon.
The results for other basins indicate that there is less of
an effect in cooler and drier climates. An important
implication of this is for the simulation of the occurrence
and magnitude of floods and droughts as the soil mois-
ture field may develop very differently when forced with
the corrected precipitation, not only because of the
change in rain day statistics but also because the spatial
structure of storms may be broken down. One potential
solution to the problem of spatial incoherence is to use
the method of correlated random numbers (Wilks 1998)
although this is beyond the scope of this study. Nev-
ertheless, for large-scale modeling, the side effects of
the correction at continental and seasonal scales are
small.

This work forms part of an effort to create a global,
multidecade, daily, sub-28, terrestrial, meteorological
forcing dataset to drive land surface model simulations
of the global water and energy balance. These simula-
tions will provide a long-term, globally consistent and
validated set of land surface water and energy fluxes
and states at a high spatiotemporal resolution. The da-
taset will facilitate the study of seasonal and interannual
variability studies to an extent not possible with cur-
rently available datasets. Furthermore, the dataset will
be suitable for evaluating the ability of coupled models
and other land surface prediction schemes to reproduce
observed variability of surface fluxes and state variables
in space, and temporally for time scales up to decadal.
In addition, this long-term dataset will be useful for
diagnostic studies related to terrestrial hydrology, and
for intercomparison studies with numerical weather pre-
diction (NWP) reanalysis datasets.
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