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a b s t r a c t

The application of agrochemicals in Southeast Asia is increasing in rate, variety and toxicity with
alarming speed. Understanding the behavior of these different contaminants within the environment
require comprehensive monitoring programs as well as accurate simulations with hydrological models.
We used the SWAT hydrological model to simulate the fate of three different pesticides, one of each
usage type (herbicide, fungicide and insecticide) in a mountainous catchment in Northern Thailand.
Three key parameters were identified: the sorption coefficient, the decay coefficient and the coefficient
controlling pesticide percolation. We yielded satisfactory results simulating pesticide load dynamics
during the calibration period (NSE: 0.92e0.67); the results during the validation period were also
acceptable (NSE: 0.61e0.28). The results of this study are an important step in understanding the
modeling behavior of these pesticides in SWAT and will help to identify thresholds of worst-case sce-
narios in order to assess the risk for the environment.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The mountainous regions of Southeast Asia are undergoing
drastic changes in land-use and land-management strategies,
including changes in farming practices (Fox and Vogler, 2005;
Ziegler et al., 2009). In northern Thailand, for example, market
demands have driven intensification in crop production, including
the introduction of new, high-value crops (Schipmann and Qaim,
2011; Schreinemachers et al., 2011). As many of these crops are
targeted for sale in large, competitive local and regional markets,
great efforts are afforded to limit damage from insects, disease, and
climatic elements. It is estimated that crop damage/loss by pests
and disease would be 50% if agrochemicals were not applied (Oerke
and Dehne, 2004). Currently, Thailand ranks third out of 15 Asian
countries in mass of pesticides per unit area applied each year
(Walter-Echols and Yongfan, 2005). As pesticides pose a risk to
human health, it is important to understand how they move
through the environment via surface runoff, preferential transport,
or vertical leaching (Kruawal et al., 2005; Panuwet et al., 2012).

Losses of pesticides to the environment depend greatly on
transport pathways and the physico-chemical properties of the
compounds (Duffner et al., 2012; Sangchan et al., 2012). Many hy-
drological models have been developed that facilitate modeling
pesticide movement from sources into catchment surface and
groundwater systems (Gevaert et al., 2008). Hydrological models
are usually applied to predict runoff within a catchment and to
assess water resources management practices (Singh and Frevert,
2006). Not all models used for these assessments were developed
specifically for simulating agrochemical transport at all appropriate
scales of interest. For example, somemodels simulate pesticide fate
only at the scale of individual fields, while others allow basin-wide
simulations. Common field-scale models are the Pesticide Root
Zone Model (PRZM, Carsel et al., 1985) or GLEAMS (Groundwater
Loading Effects of Agricultural Management Systems, Leonard et al.,
1987).

Borah and Bera (2004) presented a summary of several hydro-
logical models at the watershed scale with regard to their strengths
and restrictions in terms of pesticide transport modeling.
AnnAGNPS (Annualized Agricultural Nonpoint Source Model,
Bingner et al., 1997), the Hydrology Simulation Program-FORTRAN
(HSPF, Johanson and Kliewer, 1982), and the Soil and Water
Assessment Tool (SWAT, Arnold et al., 2011) have been successfully
applied to simulate pesticide transport at the catchment scale. Of
these models, AnnAGNPS is believed to be a good predictor of
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effects of management practices on watershed scales. HSPF was
highlighted for its strength in studying the impact of urbanization,
whereas SWAT has been recommended for predominantly agri-
cultural watersheds (Borah and Bera, 2004).

Our study focuses on improving the implementation of the
popular SWAT model for studying pesticide fate in agricultural
catchments in northern Thailand. Use of the SWAT model is well
documented and it is increasingly being used to simulate pesticide
transport (Gassman et al., 2007; Holvoet et al., 2008). The processes
implemented in SWAT to simulate pesticide transport are largely
controlled by specific physicochemical parameters such as sorption
coefficient, half-life time, or percolation coefficients (Neitsch et al.,
2011). A large physico-chemical parameter database, incorporated
in the recent SWAT version, enables the user to simulate the
movement of many common compounds at the catchment scale
(Arnold et al., 1998). A further advantage of SWAT is the opportu-
nity to include specific land-management operations and crop
rotations.

SWAT has been successfully applied for pesticide simulations in
temperate regions. For example, Larose et al. (2007) effectively
used SWAT to study atrazine in the Cedar Creek Watershed within
the St. Joseph River Basin in northeastern Indiana (USA).
Catchment-scale simulations reached Nash-Sutcliffe efficiency
(NSE) values of 0.43e0.59, and the model satisfactorily captured
the dynamics of stream flow and atrazine concentrations in the
relatively large (707 km2) agricultural catchment. Simulations on
the transport pattern of isoxaflutole became acceptable after
careful model parameterization (Ramanarayanan et al., 2005).

In contrast, Boithias et al. (2011) did not reach the same con-
clusions for the Save river in south-western France. Trifluralin loads
were underestimated or overestimated during a flood, and the
coefficient of determination (R2) betweenmonitored and simulated
loads was only 0.38. Similarly, unsatisfactory results were obtained
by Parker et al. (2007) in simulations of metolachlor, atrazine, and
trifluralin in the Sugar Creek Watershed, Indiana. Trifluralin con-
centrations were predicted with R2 values between 0.02 and 0.51.
For atrazine, R2 values ranged between 0.21 and 0.41. metolachlor
simulations had R2 ranging from 0.28 to 0.41.

Luo and Zhang (2009) presented results of a SWAT simulation of
the transport of chlorpyrifos and diazinon in a watershed in Cali-
fornia. They reached NSEs around 0.55, with variability existing for
rainfall periods versus irrigation periods. Ficklin et al. (2012),
simulating the transport of chlorpyrifos and diazinon in another
large Californian agricultural watershed (Sacramento River water-
shed 23,300 km2), reported that the loads of both compounds were
only moderately determined by streamflow (chlorpyrifos:
R2¼ 0.44; diazinon: R2¼ 0.23). In recent times, Ahmadi et al. (2013)
simulated atrazine loads of Eagle Creek in Indiana, USA, with NSEs
between 0.14 and 0.52.

In the past, the SWAT model has been calibrated mostly using
the Parasol calibration tool (van Griensven and Meixner, 2007),
which is a built-in routine of SWAT. In the Parasol tool within SWAT,
most parameters directly related to the fate and transport of pes-
ticides are not selectable and therefore not part of the auto-
calibration. The same is true for the built-in sensitivity analysis
tool of SWAT. Thus, calibration of these parameters in prior studies
has been performed almost exclusively manually (Ahmadi et al.,
2013; Ramanarayanan et al., 2005; Boithias et al., 2011). Alterna-
tively, default values have often been used (e.g. Luo and Zhang,
2009; Zhang and Zhang, 2011). Only recently, Ficklin et al. (2012)
presented an automatic calibration of some of the pesticide-
related parameters in SWAT using the SUFI-2 method (Abbaspour
et al., 2004).

In this study, we apply a new Monte-Carlo-based calibration
method, ANSELM, with SWAT to study the transport of three

pesticides in a tropical catchment in northern Thailand. We
compare modeled daily stream concentrations, loads and applica-
tions with measured data. In the modeling process, we perform a
Latin-hypercube (LH) sensitivity analysis of all pesticide-related
parameters. All these parameters are integrated in the calibration,
together with the time of pesticide application as an additional
parameter. Aftermodel testing, we perform an uncertainty analysis.
In addition to the goal of understanding the dynamics of pesticide
movement in the catchment, which is rapidly undergoing agricul-
tural changes, we also sought to develop improved methods for
such simulations using SWAT, particularly for tropical
environments.

2. Material &methods

2.1. Study site

TheMae Sa catchment (18� 5400 N, 98� 5400 E), located 35 kmnorthwest of Chiang
Mai in northern Thailand, has a total area of about 77 km2. In 2006, about 24% of the
catchment areawas under agricultural use, whereasmuch of the remaining areawas
covered by deciduous and evergreen forest characterized by various degrees of
disturbance. The catchment spreads over elevations ranging from 325 to
1540 m a.s.l. Many hillslopes are steeper than 100%. The main soil types are Acrisols
and Cambisols (FAO, 1998; Schuler, 2008). The underlying geology includes granite
and gneiss along with pockets of freshwater limestone and marble. Tropical climatic
conditions are dominant, with a mean air temperature of 21 �C and a total annual
rainfall of 1250 mm. The rainy season typically begins in May and ends in late
October, with the dry season extending from November to April. Typical crops now
grown in the Mae Sa catchment are bell pepper, litchi, chayote, cabbage and flowers
(Schreinemachers et al., 2011). Most crops are grown in the rainy season. Those
grown in the dry season are irrigated. Many farmers in the study area frequently
shift from one crop to another between different years (Schreinemachers and
Sirijinda, 2008). Among the different categories of pesticides, insecticides were
used most frequently (87%), followed by fungicides (68%) and herbicides (29%)
(Schreinemachers et al., 2011). Pesticides are applied manually with hand-spraying
devices.

2.2. Stream flow and pesticide monitoring

From January 2008 to December 2010 we operated two weather stations (Thies
GmbH, Germany; UIT GmbH, Germany) equipped with sensors for monitoring air
temperature, solar radiation, relative humidity, wind speed and rainfall. Rainfall data
were recorded by 12 automatic tipping bucket gauges (Fischer GmbH, Germany),
which were evenly distributed throughout the watershed (Fig. 1). At the main
catchment outlet, an automatic water sampler (6712 Portable sampler) coupledwith
an ultrasonic water level sensor (710 Ultrasonic module, Teledyne ISCO Inc., USA)
was installed to collect water samples and to measure stream flow at 10-min in-
tervals. A stageedischarge relation curve was derived by a series of calibration
measurements using an acoustic digital current meter (OTT ADC GmbH, Germany)
across a wide range of discharges. Water samples were taken discharge-
proportionally on a daily basis. In total, 82 and 89 samples were collected in 2008
and 2009, respectively.

Water samples were analyzed for one herbicide, one fungicide and five in-
secticides (reported by Sangchan et al., 2012). For our modeling study, we selected
one pesticide of each usage group: Atrazine (herbicide), chlorothalonil (fungicide)
and endosulfan (insecticide). Key physico-chemical properties of these pesticides
are presented in Table 1.Water samples were filtered through glass fiber filters (GF/F,
0.7 mm, Whatman Inc., USA). Pesticides were extracted from water samples by solid
phase extraction (SPE) (Supelclean� Envi-carb, Supelco, Germany). Chlorothalonil
and endosulfan were analyzed by a gas chromatograph-micro electron capture
detector (GC-mECD). Atrazine was analyzed by a gas chromatograph-nitrogen
phosphorus detector (GC-NPD). The selected samples with outstanding high peak
concentrations were confirmed by a gas chromatographemass spectrometer (GCe
MS). Limit of detection, recoveries and relative standard deviation (RSD) of the
monitored pesticides are shown in Table 2. Pesticide loads in the river were calcu-
lated by multiplying measured average daily pesticide concentrations by the cor-
responding mean daily discharge. Additional information on the sampling and
analyzing procedure is reported in Sangchan et al. (2013).

2.3. Modeling

SWAT is a semi-distributed, watershed-scale model that operates at a daily time
step. The model requires input data on climate, topography, soil and land use. The
basic entities of SWATare hydrological response units (HRUs). Apart from simulating
surface and subsurface hydrological processes, SWAT provides sub-models to
simulate different management operations and pesticide fate and transport (Neitsch
et al., 2011). SWAT, however, does not simulate stress on plants due to pests or stress
relief following pesticide application. Thus, the effect of pesticides on plants is not
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simulated directly. Nonetheless, the fate and transport of pesticides within a
catchment following application can be simulated via process-based equations
adopted from the GLEAMS model (Leonard et al., 1987). Briefly, pesticides are
transported by water and sediment in surface runoff and by soil water leaching
through different soil layers down to a shallow aquifer. Furthermore, pesticides are
routed throughout the stream by flowing water and when sorbed to suspended
particles. The key processes implemented in SWAT are sorption (linear approach),
degradation (first order approach), percolation and wash-off.

As a first step, we set up SWAT to simulate only the discharge dynamics of the
Mae Sa catchment. Here, the catchment was divided into five sub-basins. The sub-
basins were further divided into 111 HRUs, defined by land use, soil type and
slope. Calibration and validation of the model to the observed discharge of the
watershed were performed by means of the recently developed ANSELM tool
(Bannwarth et al., under revision). Briefly, ANSELM is a Monte-Carlo-based cali-
bration approach that searches within pre-defined ranges using a triangular search
strategy around a predefined peak value. It uses the Nash-Sutcliffe modeling effi-
ciency (NSE; Nash and Sutcliffe, 1970) for evaluating the model performance during
calibration. Any SWAT input parameter can be calibrated and the calibration of all
parameters is simultaneously.

After determining the parameter set with the highest discharge simulation
performance, we integrated pesticide applications into the model. We derived
pesticide application rates from data supplied by Schreinemachers (pers. comm.)
(Table 3). Since the survey data did not include spatial information, we divided the
total applied amount of pesticide by the total agricultural area to estimate the
application rate in g/ha. After calibration pre-tests designed to reduce simulation
time and uncertainties in the calibration, the maximum number of pesticide ap-
plications was restricted to five. For each of these application events, the application
time and amount was calibrated independently. The starting values of the physico-
chemical parameters of the pesticides (Table 3) were set according to published data
(e.g., Tomlin, 2003; The Footprint pesticide database, 2013). The pesticide applica-
tion efficiency parameter artificially reduces the amount of the applied pesticide
mass per hectare. As total pesticide applicationwithin the catchmentwas of interest,
we kept the application efficiency to unity. The different pesticides were simulated
separately because SWAT allows only one pesticide to be routed at a time.

During calibration of pesticide dynamics, those parameters sensitive to
discharge were fixed to the values gained from the optimal run in the hydrological

optimization. Because parameters exclusively related to pesticides cannot be
selected by the built-in sensitivity analysis tool of SWAT, we developed and
implemented a Latin-hypercube (LH) analysis following the approach of van
Griensven et al. (2006). That approach uses 100 intervals to evaluate the sensi-
tivity of ten parameters (Table 3). Criteria for the sensitivity were the mean simu-
lated pesticide load per day, the maximum simulated pesticide load, and the NSE
value of the simulated time series.

The overall relative sensitivity of each parameter was calculated in multiple
steps. First, after calculating the separate sensitivities of each parameter in each
interval, the mean sensitivities in all intervals for each parameter were calculated.
These sensitivities were then normalized by the parameter with the highest sensi-
tivity for each criterion. Lastly, the mean of the sensitivities for all three criteria was
taken as an overall relative sensitivity. Minor changes in the application time, which
is needed for LH-sensitivity analysis data, were not an input to the model. This is
because SWAT runs on a daily basis. Therefore, application time and frequency were
not included in the sensitivity analysis.

We used the ANSELM approach to calibrate all parameters used in the sensitivity
analysis, including the application time. This study shows an automatic calibration
approach for the full range of the physico-chemical pesticide parameters of SWAT
together with the temporal variability of the application. We used measurements
from 2008 to 2010 for calibration and model testing, respectively (Sangchan et al.,
2013). Model uncertainties were calculated by means of the generalized likelihood
uncertainty estimation (GLUE, Beven and Binley, 1992).

3. Results

3.1. Sensitivity analysis

The results of the LH-sensitivity analysis performed for 10
model parameters using 100 intervals are summarized in Table 4.
The sensitivity ranking of the parameters was different for the three
pesticides, although some parameters were more dominant than
others. The percolation parameter was found to be one of the key

Fig. 1. The 77-km2 Mae Sa catchment in northern Thailand with locations of monitoring devices (altered after Sangchan et al., 2013).
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parameters. For atrazine, this parameter was the most sensitive, for
chlorothalonil it ranked second, and for endosulfan third. Other
parameters showed specific sensitivities with respect to each
pesticide. The parameter SKOC, for example, demonstrated
different sensitivities because of its role in steering the sorption
behavior of a particular pesticide e and therefore it was sensitive
with atrazine and with chlorothalonil, but not endosulfan. A
different picture emerged with HLIFE_S, the half-life time in soil.
This parameter was sensitive when simulating the transport of
endosulfan and chlorothalonil, but not atrazine (7th most sensitive
parameter).

The sensitivity analysis revealed that the parameter application
times and rates were important leverage parameters for all three
pesticides considered. In the case of each pesticide, one of the five
application rate parameters was ranked within the top two pa-
rameters with regard to sensitivity.

In the case of endosulfan, only two parameters were identified
with a relative sensitivity of more than 0.5. For chlorothalonil, five
parameters had high sensitivity. With atrazine, only three param-
eters showed low sensitivitydand these were for application
amounts. The wash-off fraction was marginally important for
atrazine and endosulfan, and of low sensitivity for chlorothalonil.
The parameter triggering degradation time on the foliage HLIFE_F

was minimally important for chlorothalonil and endosulfan and
moderately important for atrazine. In general, no parameter
showed the same importance level in all three pesticides.

3.2. Pesticide modeling

3.2.1. Pesticide application
Yearly application rates, calculated from the raw data of

Schreinemachers et al. (2011; pers. comm.), were compared with
simulated application rates (Table 5). In 2006, no farmer had
indicated in the survey to use atrazine (Schreinemachers and
Sirijinda, 2008). Application rates of the other two pesticides
differed greatly between 2006 and 2010. Regarding chlorothalonil,
the application rate in 2006 (2600 g/ha) was almost three-fold
higher than in 2010 (1018 g/ha). For endosulfan, the surveyed
application rate in 2006 was only 3 g/ha, much lower than 43 g/ha
in 2010. As the application rates from the survey may not truly
reflect reality, application rates were also subjected to calibration.
The simulated application rates of atrazine and chlorothalonil were
lower than the survey values. The calibrated application amount of
atrazine was almost half that determined in the 2010 survey. For
chlorothalonil, however, the calibrated amount (769 g/ha) was less
than one third of that in 2006 (2600 g/ha), but in an acceptable
range to the value of 2010 (1018 g/ha). The calibrated endosulfan
amount was between the 2006 and 2010 survey values. Note that
the application rates, fitted by calibration to the measured data in
2006, were used for both the calibration year 2006 and the vali-
dation year 2010.

3.2.2. Observation data
Measured concentrations of the three investigated pesticides and

the frequency of detection (FD) in the stream at the outlet gauging
station in 2008 and 2010 are shown in Fig. 2. Atrazine generally

Table 1
Key physico-chemical properties of the selected pesticides used in this study (Tomlin (2003) and The Footprint Pesticides Properties Database (2012)).

Pesticide (common name) Atrazine Chlorothalonil Endosulfan

Usage type Herbicide Fungicide Insecticide
Structure formula

Substance group Triazine Chloronitrile Organochlorine
Sorption: KOC (linear) 100 ml/g 850 ml/g 11,500 ml/g
Solubility in water (20 �C) 35 mg/l 0.81 mg/l 0.32 mg/l
Soil degradation (aerobic, DT50, lab at 20 �C) 66 days 15.7 days 39 days
Recommended application rate �1.5 kg/ha 1e2.5 kg/ha 0.8e2.5 l/ha
WHO classification III U II

Table 2
Pesticide limit of detection (LOD) and percentage of recovery with relative standard
deviation (after Sangchan et al., 2013).

Pesticide LOD (ng/L) Recovery (%)

Chlorothalonil 1 58 � 27
Atrazine 2 113 � 7
Endosulfan-a 0.1 91 � 9
Endosulfan-b 0.1 101 � 7

Table 3
Selected parameters for the sensitivity analysis and calibration of the transport of atrazine (At), chlorothalonil (Ct) and endosulfan (En).

Parameter Description Unit Initial value Range

At Ct En At Ct En

Pst_KG1 1st application rate g/ha 4 204 9 2e30 100e2500 2e20
Pst_KG2 2nd application rate g/ha 4 204 9 2e30 100e2500 2e20
Pst_KG3 3rd application rate g/ha 4 204 9 2e30 100e2500 2e20
Pst_KG4 4th application rate g/ha 4 204 9 2e30 100e2500 2e20
Pst_KG5 5th application rate g/ha 4 204 9 2e30 100e2500 2e20
SKOC KOC: Soil adsorption coefficient normalized for soil organic carbon content ml/g 100 1380 12,400 50e150 1000e1500 10,000e15,000
HLIFE_F Degradation half-life of the chemical on the foliage days 5 5 3 1e20 1e20 1e20
HLIFE_S Degradation half-life of the chemical in the soil days 60 30 50 20e120 5e60 10e100
PERCOP Pesticide percolation coefficient e 0.5 0.5 0.5 0.1e0.9 0.1e0.9 0.1e0.9
WOF Wash-off fraction e 0.45 0.5 0.05 0.1e0.9 0.1e0.9 0.1e0.9
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showed the highest mean andmaximumdaily concentration in both
study years. The mean observed concentration in 2008was only half
that of 2010. Themaximum concentration in 2008was lower than in
2010. The 2008 value (0.2 mg/l) was about 20 times higher than the
mean, while the 2010 maximum was about 15 times higher. Chlor-
othalonil showed the second highest mean concentrations; the 2010
meanvaluewas slightly lower than in 2008. Themaximumobserved
concentration in 2008, however, wasmore than 30-fold greater than
the mean. Endosulfan had the lowest values: the mean daily con-
centrations of 2008 were slightly lower than in 2010. This trend was
also present for the daily maxima.

3.2.3. Simulations
After calibrating the SWAT model using the ANSELM tool, the

measured and simulated temporal dynamics of pesticide loads
agree acceptably well (Fig. 3). With atrazine, the pattern is matched
best over the entire rainy season, as reflected in the highest NSE
value in both the calibration and validation period. In the calibra-
tion period (2008), the pattern of chlorothalonil is well reproduced

early in the rainy season. Larger deviations between observed and
simulated loads occur at the end of the dry season and during the
rainy season, when the predicted load drops to zero. The situation is
similar with endosulfan, but the overall agreement with the
observed loads is better than with chlorothalonil. In the validation
period (2010), the NSE of the atrazine simulations is still in an
acceptable range (NSE ¼ 0.61). In the case of chlorothalonil and
endosulfan, however, the predictive power of the model is
distinctly lower, with NSE dropping to about 0.3.

The simulated yearly loads of atrazine were the highest among
the investigated pesticides. Between 2008 and 2010, values
decreased from 0.175 to 0.128 g/ha (Table 5). Chlorothalonil showed
the second largest concentration in 2008, dropping to third in 2010,
although it was nearly the same as in 2008. Endosulfan was the
only pesticide to show an increase between 2008 and 2010. The
simulated loss shows the same relations for all pesticides between
2008 and 2010, but the atrazine losses are about 5e13 times higher
than those of endosulfan and more than 100 times higher than
those of chlorothalonil.

Table 4
Relative sensitivity of the calibrated pesticide parameters for atrazine (At), chlorothalonil (Ct) and endosulfan (En). The font size in the cells in the “Rank” column indicates the
sensitivity.

M.A. Bannwarth et al. / Environmental Pollution 191 (2014) 70e7974
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The simulated loads were converted into concentrations by
multiplying by the correspondingmean daily discharge (Fig. 2). The
simulated mean atrazine concentration of 2008 matched the
observed value of 0.01 mg/l. The simulated mean of 2010, however,
underestimated the observed value by 45%. In both years the
simulated and observed maxima were similar, although the former
were lower than the latter.

As in the observations, the simulated mean concentration of
chlorothalonil in 2008 was slightly higher than in 2010, although
the variability of the simulation values was higher than the
observed values. The simulated maximawere reasonable estimates
of the measurements, but did underestimate the values. The
simulated endosulfan means of 2008 slightly overestimate the
observed values; the same holds true for the 2008 maximum,
whereas the 2010 maximum was in line with the observations.

3.2.4. Specific parameter analysis
In the sensitivity analysis, the sorption coefficient and the decay

coefficient were identified as two of the most sensitive physical
parameters with respect to all pesticides. While the Koc value of the
three pesticides differ vastly (Table 1), the half-life is within the
samemagnitude. However, under anaerobic conditions the half-life
time could be considerably higher. In Fig. 4 it is shown by example
how the highest daily concentration or the yearly accumulated load
of atrazinewould be hypothetically affected if the KOC value or Half-
Life would be different. Here, the KOC value has the largest impact,
values of 50 or result in very high concentrations, the half-life co-
efficient is only of minor importance.

Since the application time was not part of the sensitivity anal-
ysis, it is also of interest, how a variation in application time would
affect the peak concentration and yearly accumulated loads. Since
atrazine and endosulfan represent the two ends of the KOC value

range in this study, these two pesticides have been chosen by
example. Both pesticides show a calibrated pesticide application
time in mid-march (Fig. 3). This day was shifted to max. 5 days to
the future and to the past. Fig. 5 shows the effect of the application
timing on peak concentrations and accumulated loads. While with
endosulfan a delay of the application time would in general result
in higher concentrations, a change of the application time of atra-
zine would mostly result in lower concentrations.

3.2.5. Uncertainties
The uncertainty bands of the pesticide loads bracket the mea-

surements well (Fig. 6). The pattern of these bands mostly follows
the discharge dynamics and is overlaid by the pesticide applica-
tions. In atrazine, the band is broad, indicating significant model
uncertainty, especially after application. For example, the highest
observed atrazine load was 11 g ha�1, but the upper limit of the
prediction uncertainty band peaked at 30 g ha�1. The uncertainty
band of endosulfan, in contrast, shows the largest uncertainties
during high discharge events. The GLUE analysis helps assess the
highest possible loads per day. The upper limits of the uncertainty
bands of all pesticides are below the threshold of 35 g day�1.

4. Discussion

4.1. Sensitivity analysis

The different parameter sensitivities of the three pesticides can
be explained by their properties. Atrazine has a lower KOC value
than chlorothalonil and endosulfan. Therefore, the SKOC and
PERCOP parameters, which trigger leaching, are among the most
sensitive parameters in the atrazine simulation. The different
sensitivities of the SKOC parameter within the three pesticides

Table 5
Yearly total application rate along with observed and predicted pesticide loads and loss of dissolved pesticides in the Mae Sa watershed in 2008 and 2010.

Pesticide Yearly mean applicationa (g/ha) Application (simulated) (g/ha) Yearly accumulated load (simulated) (g/ha) Yearly loss (simulated) (%)

2006 2010 2008, 2010 2008 2010 2008 2010

Atrazine n.a. 22 12 0.175 0.128 1.94 1.43
Chlorothalonil 2600 1018 769 0.076 0.072 0.01 0.01
Endosulfan 3 43 34 0.050 0.102 0.15 0.30

a Based on the surveys by Schreinemachers and Sirijinda, 2008 and Schreinemachers et al. (2011), n.a.: non-available data.

Fig. 2. Mean daily pesticide concentration in stream at the outlet of the Mae Sa watershed in 2008 and 2010. Panel A shows the mean of all daily concentrations, panel B the
maximum daily concentrations. Error bars indicate the standard deviation, the percentage numbers the frequency of detection.
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match the magnitude of its value. The lower KOC value was the
more sensitive. Atrazine is furthermore rather persistent, at least
compared with the other two pesticides. Therefore, HLIFE_S, the
parameter steering soil degradation, is only moderately important
for atrazine. In contrast, this parameter was highly sensitive dur-
ing simulations of chlorothalonil and endosulfan. The PERCOP
parameter was sensitive for all pesticides, although with the
lightly degradable endosulfan its relative sensitivity was some-
what lower.

Atrazine is a herbicide, which is most likely applied only once or
twice a year, whereas the fungicides and insecticides are often
applied repeatedly, whenever needed. Therefore, only one appli-
cation rate was found to be highly sensitive with atrazine, while
with endosulfan, up to four applications had a relative sensitivity
exceeding 0.2. Accordingly, usage seems to be highly correlated
with the number of applications needed for the simulation.

4.2. Pesticide simulations

Coupling ANSELM and SWAT proved to be a useful and
reasonable means of calibrating the simulation of pesticide move-
ment in the Mae Sa catchment. The simulation of the three pesti-
cides reasonably matched the observations at both study periods.
In the calibration period, high NSEs (0.67e0.92) were achieved for
all three pesticides; these values were within the range or higher
than those in previous studies (Ramanarayanan et al., 2005; Luo
and Zhang, 2009; Boithias et al., 2011; Zhang and Zhang, 2011).
Model performance significantly declined in the validation period
(NSEs ¼ 0.28e0.61), particularly for chlorothalonil and endosulfan.
This decline might be an artifact of using the same application
scheme as in the calibration period, owing to limited input data.

Two important factors controlling pesticide dynamics in river
water were rainfall and application practices. While rainfall data

Fig. 3. Observed and SWAT-simulated pesticide loads at the outlet of the Mae Sa watershed. Dark arrows indicate simulated pesticide application rates over 5 g/ha. Note the
different scales of the right and left y-axes.
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are relatively easy to measure, it is practically impossible to obtain
accurate application times and rates of all farmers, except in very
small catchments (Doppler et al., 2012). A farmer’s decision to apply
a pesticide is driven by a variety of factors such as crop develop-
ment, pest pressure, weather, workload and individual appraisal.
The more complex the application scheme, the larger the uncer-
tainty in the model simulation. This probably explains why the
decline of the NSE in the atrazine simulation was less than that of
the two other pesticides.

The differences between simulated and observed maximum
daily concentrations may also be explained by application
complexity. Among the investigated pesticides, large discrepancies
in applicationwere observed. Atrazine seems to have a quite simple
and reproducible application scheme. Only one application, at the
beginning of the rainy season, was sufficient, whereas three to four
applications of chlorothalonil and endosulfan, distributed over the
entire rainy season, were needed to achieve satisfactory simulation
results.

Our results of Fig. 4 suggest that when pesticides with very low
KOC values are used, high pesticide peak concentrations can be
anticipated. In addition, the timing of pesticide application can
have a big impact on the magnitude of such events. The first step
would be to transfer this information to the farmers and if a
pesticide application in the rainy season is absolutely inevitable,
weirs and dams could be a measure to ease this problem.

The time series uncertainty bands often show large peaks dur-
ing periods when no data were available. To judge the model per-
formance of the calibratedmodel for each pesticide, the efficiencies
were calculated only for time steps where observed data were
available. Furthermore, the observed concentrations were con-
verted into loads by multiplication with observed discharge and
vice-versa, yielding more uncertainties in both observations and
simulations. Although the uncertainty bands are quite wide, the
upper limit of the prediction uncertainty band was of the same
order of magnitude as the observed data. The broad uncertainty
band for endosulfan is strongly correlatedwith the discharge peaks.

Fig. 4. Simulated maximum daily concentrations (mg/l) and yearly accumulated loads (g/ha) of pesticides with different half-life and KOC-values in the Mae Sa streamwater in 2008.
All other parameters of the pesticides have been set by example like atrazine (Table 4).

Fig. 5. Simulated maximum daily concentrations (mg/l) and yearly accumulated loads (g/ha) of Atrazine and Endosulfan with changing time of application.
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In contrast, those of atrazine and chlorothalonil are not strongly
correlated, probably because other factors, such as the application
amount, more strongly affect uncertainty.

5. Conclusion & outlook

The simulation of pesticide fate using SWAT coupled with
ANSELM was successful in different ways. Firstly, all pesticide-
related parameters were subjected to both a LH-sensitivity anal-
ysis and later auto-calibration. Secondly, we calibrated not only
physico-chemical pesticide parameters and the absolute pesticide
amount, but also integrated the application time and the necessary
number of application events in the auto-calibration. We compared

the simulation behavior of three pesticidese each one of a different
usage type (herbicide, fungicide, insecticide) e and their sensitiv-
ities within SWAT simulations. We found large differences in the
sensitivities of different parameters; nonetheless, the percolation
parameter seems to be the key parameter in each SWAT simulation.
In particular, atrazine and endosulfan differed considerably both in
response to the number of applications and application timing, as
well as in the sensitivity to parameters concerning degradation and
adsorption. Here, the ability of ANSELM to select and use any
parameter of SWAT for a LH-sensitivity analysis was very useful.

Because we achieved high model efficiencies during calibration
(NSE: 0.67e0.92 for all three pesticides) and reasonable ones dur-
ing validation (NSE: 0.28e0.61), we largely fulfilled our goal of

Fig. 6. Predicted uncertainty bands (PU) of the pesticide loads for the years 2008e2010.
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simulating the temporal pattern of the pesticide transport to the
stream. Simulated mean and maximum daily concentrations
matched observations sufficiently. Better results could probably be
achieved if reliable data on pesticide application rate and timing
were available. A survey of farmers can be a good starting point, but
this alone is insufficient. Also, exact spatial information of pesticide
application within the catchment should improve simulations.
Despite this lack of information, it is encouraging to see that
coupling SWAT with ANSELM created realistic simulations.

Nevertheless, unless the external factors of pesticide application
can be captured, SWAT and other models cannot be used for exact
daily forecasts of pesticide concentrations or loads. For most
management applications and ecotoxicological risk assessments,
however, yearly or seasonable forecasts are likely sufficient. Our
simulation results and the GLUE uncertainty analysis performed
with ANSELM indicate that loads on these time scales can be
assessed with SWAT.

In future studies, whenmore complex datawould be available, it
would be useful to generate predictions at sub-daily intervals e at
least for periods with high pesticide peaks. We additionally wish to
test the coupling of SWAT and ANSELM for other pesticides in the
catchment, especially insecticides. It will be interesting to deter-
mine whether the differences we found between the different
pesticides are representative for their respective usage types, or
whether large discrepancies exist even within these groups. We
further plan to couple SWAT with an economical model to assess
the effect of pesticide dosage reductions on stream water concen-
trations, land use and household income.
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