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a b s t r a c t

Mangroves play a disproportionately large role in carbon sequestration relative to other tropical forest
ecosystems. Accurate assessments of mangrove biomass at the site-scale are lacking, especially in
mainland Southeast Asia. This study assessed tree biomass and species diversity within a 151 ha
mangrove ecosystem on the Andaman Coast of Thailand. High-resolution GeoEye-1 satellite imagery,
medium resolution ASTER satellite elevation data, field-based tree measurements, published allometric
biomass equations, and a suite of machine learning techniques were used to develop spatial models of
mangrove biomass. Field measurements derived a whole-site tree density of 1313 trees ha�1, with Rhi-
zophora spp. comprising 77.7% of the trees across forty-five 400 m2 sample plots. A support vector
machine regression model was found to be most accurate by cross-validation for predicting biomass at
the site level. Model-estimated above-ground biomass was 250 Mg ha�1; below-ground root biomass
was 95 Mg ha�1. Combined above-ground and below-ground biomass for the entire 151-ha stand was
345 (�72.5) Mg ha�1, equivalent to 155 (�32.6) Mg C ha�1. Model evaluation shows the model had
greatest prediction error at high biomass values, indicating a need for allometric equations determined
over a larger range of tree sizes.

� 2013 Elsevier Ltd. All rights reserved.
Introduction

Mangroves are important for their ecological, economic, and
societal value (Lacambra, Friess, Spencer, & Moller, 2013; Saenger,
2002). Recent research has focused on the coastal protection
value of mangroves, especially following the 2004 Indian Ocean
Tsunami (e.g. Barbier, 2006). A recent study in the Indo-Pacific re-
gion showed that mangroves play a critical role in carbon seques-
tration, potentially storing four times as much carbon as other
tropical forests, including rainforests (Donato et al., 2011). Since the
introduction of Payment for Ecosystem Services (PES) policies,
attention has been redirected to quantify the extent to which
mangroves sequester carbon, both in standing biomass, as well as
the below-ground root biomass and the underlying soil (Alongi,
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2011; Kauffman, Heider, Cole, Dwire, & Donato, 2011; World
Bank, 2011).

Despite scientific awareness of the large carbon storage poten-
tial in mangrove biomass and soils, large areas of mangrove in
Southeast Asia have been lost in recent decades to urbanization,
aquaculture, timber harvesting and other human activities (Duke
et al., 2007; Giri et al., 2008; Valiela, Bowen, & York, 2001). Man-
groves along the Andaman coast, for example, have declined an
estimated 79% between 1961 and 1989, largely due to anthropo-
genic activities including aquaculture (Alongi, 2002; Saenger,
2002). In southern Thailand, expansion of intensive shrimp
farming is believed to have reduced mangrove extent from
3127 km2 to 1687 km2 between 1975 and 1993 (CORIN, 1995).

In recent years, mangrove loss in Thailand has slowed consid-
erably (Barbier & Cox, 2004; EEPSEA, 1998). Some areas, such as the
UNESCOMan and Biosphere Reserve in Ranong Province, have been
protected from degradation and maintain high tree density
(>800 trees ha�1) and volume (226 m3 ha�1; Aksornkoae, 1993).
However, very little is known about critical mangrove ecosystem
characteristics such as biomass and carbon stocks outside of
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conservation areas. Assessment of biomass and carbon stocks in
these unprotected mangroves can increase their perceived con-
servation value, in particular through quantification of carbon
storage potential, which would make them attractive investments
for protection and/or restoration under emerging international
mechanisms such as REDDþ.

In recognition of the developing financial incentives available
for mangrove conservation based on carbon PES schemes, studies
are beginning to quantify carbon storage of mangrove ecosystems.
Examples include deltaic South Asia (Donato et al., 2011; Mitra,
Sengupta, & Banerjee, 2011), Insular SE Asia (Donato et al., 2011),
tropical Pacific islands (Donato et al., 2011; Donato, Kauffman,
Mackenzie, Ainsworth, & Pfleeger, 2012; Kauffman et al., 2011)
and karst landscapes in the neotropics (Adame et al., 2013). How-
ever, these landscapes differ with mainland SE Asia to varying de-
grees in terms of geomorphology, sediment input, mangrove
species and community structure (Spalding, Blasco, & Field, 1997).

There are many possible approaches to quantifying mangrove
forest biomass. The most accurate method is to uproot all the trees
to obtain their dry mass. However, this is impractical both due to
the cost and effort required and the fact that it would negate the
goal of conserving mangrove stands (Ketterings, Coe, Noordwijk,
Ambagau, & Palm, 2001). A more reasonable approach is to cut
down a few trees and develop a mathematical model relating
biomass to measured tree variables, such as diameter at breast
height (DBH) and wood density (i.e., allometric equations)
(Komiyama, Poungparn, & Kato, 2005). The variables can then be
measured in a forest to develop biomass estimates. This approach is
only practical at the plot scale, great effort is needed to measure all
the trees in just 1 ha of mangrove forest. Models based on remotely
sensed data are presently the only feasible means of quantifying
mangrove forest biomass for forests of areas greater than a few
hectares. Such models utilize ground-based data and allometric
equations to develop biomass estimates for training forest biomass
models based on remotely sensed data such as surface spectral
properties and elevation.

There are innumerable statistical models that can be used in
developing remote sensing-based models. Traditionally, statistical
models can be classified into two categories: data models and
machine learning (or algorithmic) models (Breiman, 2001). A main
difference between the two is data models assume knowledge of
the processes taking place, whereas machine learning models
consider the processes complex and unknown (Breiman, 2001).
Common data models are linear regression and logistic regression.
Commonmachine learningmodels are classification and regression
trees (CART), support vector machines (SVM) and artificial neural
networks (ANN). Where prediction accuracy is the ultimate goal,
machine learning models are often superior because they make
fewer assumptions about the data and the processes. Data models
often assume variables come from a known statistical distribution,
such as the normal distribution, which is often an over-
simplification. The main argument against machine learning
models is that they are often difficult to interpret (Breiman, 2001).
However, inmodeling scenarios where the priority is developing an
accurate model, the best strategy is to employ numerous modeling
approaches and select the best resulting model.

Recently, machine learning algorithms have been shown effec-
tive for modeling mangrove stand biomass and species distribu-
tions using satellite remote sensing data (Heumann, 2011; Huang,
Zhang, & Wang, 2009; Wang, Silvan-Cardenas, & Sousa, 2008).
However, the majority of mangrove modeling efforts continue to be
done using traditional data modeling approaches (e.g. Fatoyinbo,
Simard, Washington-Allen, & Shugart, 2008; Simard et al., 2006;
Wicaksono, Danoedoro, Hartono, Nehren, & Ribbe, 2011). Machine
learning algorithms are often difficult to implement. They also have
not been available as long as traditional data modeling techniques.
Recently, a variety of free, open-source software tools have become
widely available, including R, WEKA and Python’s scikit-learn li-
brary (Hall et al., 2009; Pedregosa et al., 2011; R Core Team, 2013).
Machine learning is a rapidly growing area of study that should
become more common for biomass modeling because of its po-
tential to produce better models than traditional data modeling
approaches.

The objective of this study was to develop a mangrove forest
biomass model using remotely sensed data and machine learning
methods. We also describe an economical assessment approach
using widely available remote sensing products and free open-
source software for modeling and mapping mangrove biomass.
Methods

Study site

This study was conducted within a 151-ha, riverine mangrove
situated at the mouth of the Kamphuan River (9�220N 98�240E), in
Suksamran subdistrict, Ranong Province, along the Andaman Sea in
southern Thailand (Fig. 1). The site is located behind a long frontal
beach that reduces tidal and wave energy, providing an environ-
ment conducive to the establishment of mangrove seedlings
(Fig. 1). The mangrove is situated 60 km south of the protected
Ranong Biosphere Reserve. Ranong Province has a continuous belt
of mangroves along the Andaman Sea coast, comprising almost 80%
of all the mangrove forest area in Thailand (Macintosh, Aston, &
Havanon, 2002). The coastline of Ranong has undergone less
development than other Thai provinces along the Andaman coast
(Macintosh, Aston, & Havanon, 2002). However, natural distur-
bances and anthropogenic activity are causing fragmentation in
these mangroves areas (Doydee & Buot, 2010; Macintosh, Aston, &
Havanon, 2002). During the 2004 Indian Ocean Tsunami, mangrove
trees near the coastline were uprooted by wave surges (Fujioka
et al., 2008). Meanwhile, inland areas of mangroves experience
bank erosion from boat wakes and deforestation for settlement and
aquaculture (Supplementary Fig. S1). Coastal communities in
Suksamran subdistrict utilize a range of ecosystem goods and ser-
vices provided by mangroves e fuelwood, fish, molluscs, crusta-
ceans and other edible and otherwise useful aquatic species are
harvested from the mangrove (Macintosh, Ashton, & Tansakul,
2002).
Field data collection

Trees were measured in 45 separate 20 m � 20 m (400 m2)
sample plots (total surveyed area ¼ 1.8 ha). Plots were selected
using a stratified random sampling method for which strata were
initially determined through a qualitative classification of the site
into high, medium and low biomass, based on a visual assessment
of tree density and size during pre-survey reconnaissance. This
stratification was employed to ensure the range of biomass values
present in the forest would be sampled. It was necessary to sample
plots with both very high and very low biomasses to ensure the
models derived from the data would be valid for the entire forest.
The plot center points were determined by non-differential GPS to a
positional error of <15 m under canopy.

In total, 13, 23, and 9 plots were sampled in low, medium and
high density areas of the forest, respectively (Supplementary Fig. S1).
Densities corresponded roughly to 45, 55 and 65 trees per 400 m2

plot. For each tree,we recorded species and diameter at breast height
(DBH), which was the diameter at 1.3 m above the ground (or 30 cm
above the highest prop root in the case of Rhizophora sp.).



Fig. 1. Map of the study area. Kamphuan River study area (151-ha) and 45 sample plots in Suksamran subdistrict, Ranong province, southern Thailand.
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Forest composition, structure, and biomass calculations

Species importance was computed per the importance value
index (IVI) (Cintron & Schaeffer Novelli, 1984; Curtis & McIntosh,
1950). Above-ground biomass (AGB) and below-ground biomass
(BGB) were computed for each plot using allometric equations
developed by Komiyama et al. (2005):

AGB ¼ 0:251*r*DBH2:46 (1)

BGB ¼ 0:199*r0:90*DBH2:22 (2)
where r is species-specific wood density (Table 1). Wood density
values were collected in the field for all tree species using a 0.200-
inch diameter and 8-inch long handheld tree increment borer and
the method described by Komiyama et al. (2005). Three samples
were collected for each species. The bark was included for specific
gravity wood density measurements with the exception of Son-
neratia ovata and Bruguiera gymnorrhiza.

The allometric equations were based on data collected from four
sites in southern Thailand (Pang-nga, Trat, Satun and Ranong
Provinces) and one in Indonesia (Komiyama et al., 2005). The site in
Ranong was located 60 km from our study site. The equations of
Komiyama et al. (2005) do not include tree height as a variable, as



Table 1
Mean specific gravity wood density (r) of 15 mangrove species found at study site.

Species r (Mg m�3)

Bruguiera cylindrica (L.) Blume 0.6681 � 0.057 (n ¼ 6)
Bruguiera gymnorrhiza 0.7273 � 0.016 (n ¼ 3)a

Bruguiera parviflora (Roxb.) Wight & Griff 0.6256 � 0.031 (n ¼ 3)
Ceriops tagal (Perr.) C.B. Rob. 0.6952 � 0.028 (n ¼ 6)
Ceriops decandra 0.6952 � 0.028b

Rhizophora apiculata Blume 0.7417 � 0.032 (n ¼ 6)
Rhizophora mucronata Lam. 0.6723 � 0.054 (n ¼ 6)
Avicennia alba Blume 0.5220 � 0.021 (n ¼ 6)
Avicennia officinalis (L.) Blume 0.5362 � 0.051 (n ¼ 6)
Sonneratia alba 0.4110 � 0.042 (n ¼ 5)
Sonneratia ovata 0.5502 � 0.084 (n ¼ 3)a

Xylocarpus granatum Koenig 0.5894 � 0.021 (n ¼ 6)
Xylocarpus moluccensis Lam. 0.5495 � 0.034 (n ¼ 6)
Lumnitzera littorea (Jack) Voigt 0.5674 � 0.053 (n ¼ 6)
Heritiera littoralis (Dryand.) Aiton. 0.6010 � 0.105 (n ¼ 6)

Values are � one standard deviation; n is sample number.
a Specific gravity wood density was determined without bark.
b Assumed to be the same as Ceriops tagal.

Table 2
Predictor variables examined in this model-building exercise.

Variable name Variable definition Data source

Band 1 Blue, 450e520 nm GeoEye-1
Band 2 Green, 520e600 nm GeoEye-1
Band 3 Red, 625e695 nm GeoEye-1
Band 4 Near infrared, 760e900 nm GeoEye-1
Ratio 1 Band 1/Band 2 GeoEye-1
Ratio 2 Band 1/Band 3 GeoEye-1
Ratio 3 Band 1/Band 4 GeoEye-1
Ratio 4 Band 2/Band 3 GeoEye-1
Ratio 5 Band 2/Band 4 GeoEye-1
Ratio 6 Band 3/Band 4 GeoEye-1
NDVI (Band 4 � Band 3)/(Band 4 þ Band 3) GeoEye-1
Minimum elevation Minimum elevation ASTER GDEM V2
Maximum elevation Maximum elevation ASTER GDEM V2
Average elevation Average elevation ASTER GDEM V2
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earlier work has shown that height often does not improve biomass
estimations (Ketterings et al., 2001; Soares & Schaeffer-Novelli,
2005; cf. Clough, 1992; Clough & Scott, 1989). To convert above-
and below-ground biomass to carbon stocks, the ratio of 0.45 was
applied as per Twilley, Chen, and Hargis (1992).
Remotely sensed data collection

A geo-corrected GeoEye-1 satellite image (2.0 m spatial reso-
lution with an RMSE of 3.0 m) of the study site was acquired for 14
December 2011. The imagery provides reflectance values in four
spectral bandwidths: Band 1 (blue) 450e520 nm; Band 2 (green)
520e600 nm; Band 3 (red) 625e695 nm; and Band 4 (near
infrared) 760e900 nm. Radiometric correction was not required
because atmospheric effects were consistent across the entire
image.

Additionally, medium resolution satellite elevation data (30 m
spatial resolution) were acquired from the ASTERGDEMV2 product
(NASA LP DAAC, 2012). The ASTERGDEMwas chosen because it was
available at 30 m resolution for this site, as compared to 90 m
resolution for the SRTM DEM. It is also more representative of
canopy elevation than the SRTM DEM (Ni, Guo, Sun, & Chi, 2010).
Table 3
WEKA machine learning algorithms used to build above-ground biomass models.

WEKA algorithm Classifier type Correlation coefficient

SMOreg Function 0.81
LeastMedSq Function 0.78
GaussianProcesses Function 0.77
PaceRegression Function 0.74
LinearRegression Function 0.74
M5P Trees 0.74
M5Rules Rules 0.73
SimpleLinearRegression Function 0.72
IsotonicRegression Function 0.66
LWL Lazy 0.61
DecisionStump Trees 0.60
MultilayerPerceptron Function 0.59
Ibk Lazy 0.56
RBFNetwork Function 0.54
Kstar Lazy 0.53
REPTree Trees 0.42
ConjunctiveRule Rules 0.40
DecisionTable Rules 0.30

The algorithms are ranked by correlation coefficients determined using a leave-one-
out analysis of models constructed using the optimal predictor variable set: Band 2,
Band 4, Ratio 1, Minimum & Maximum elevations (see Table 6). Algorithm de-
scriptions can be found at http://www.cs.waikato.ac.nz/ml/weka/(Hall et al., 2009).
Predictor variable selection & preparation

From the remotely sensed data a total of 14 predictor variables
were produced and examined (Table 2). In addition to the 4
spectral bands, we also examined 7 combinations of bands: 6
simple ratios (e.g. Band 1/Band 2) and the Normalized Difference
Vegetation Index (NDVI). The simple ratio index was first used
by Jordan (1969). The Normalized Difference Vegetation Index
(NDVI) was calculated as per Rouse, Haas, Schell, and Deering
(1973):

NDVI ¼ ð½Band 4� � ½Band 3�Þ=ð½Band 4þ Band 3�Þ (3)

For all survey plots, spectral reflectance values of bands 1, 2, 3
and 4 were extracted from the image. Due to the large plot sizes
(400 m2), several GeoEye-1 satellite imagery pixels (4 m2) covered
each plot. The Band and Ratio variables used the average pixel
values in each plot.

The remaining 3 predictor variables were elevation variables.
Due to spatial positioning mismatch between the ASTER GDEM
pixels and the plot areas there were multiple possible elevation
values for each plot. We considered the minimum, maximum and
average elevations within the plots.

The selection of predictor variables is always subjective; and
there are an infinite possible number of variables that could have
been examined.We chose these 14 variables because they are easily
accessible to practitioners and simple to compute.

Model development

Data preparation, modeling and analysis were carried out using
two free and open-source software packages: GRASS GIS and
WEKA. GRASS GIS was the geographic information systems soft-
ware used for data preparation, data extraction at plot locations,
and mapping (GRASS Development Team, 2012). WEKA was the
modeling software used for machine learning modeling and anal-
ysis (Hall et al., 2009). Nineteen WEKA machine learning algo-
rithms were applied to a variety of predictor variable sets (Table 3).
Models were ranked according to their correlation coefficients (r)
with prediction errors based on Leave-One-Out (LOO) cross-
validation. In LOO, each sample is excluded in turn and a model
developed with all remaining samples is used to predict the
excluded sample. This method is useful for identifying outliers and
provides nearly unbiased estimations of the prediction error (Efron
& Gong, 1983; Schlerf, Atzberger, & Hill, 2005). The 14 predictor

http://www.cs.waikato.ac.nz/ml/weka/
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variables were examined in various combinations (Table 2). As it
would have been inefficient to test all possible combinations of
predictor variables across all modeling techniques (a total of
311,277 combinations), a heuristic approach was taken to deter-
mine possible combinations that would yield better models. The
overall goal of the model development process was to determine
the most accurate model for spatial biomass prediction.

Results

Field survey results

A total of 2364 trees were recorded in the 45 survey plots,
representing a combined area of 1.8-ha. Fifteen species were
found at the site: Rhizophora apiculata, Rhizophora mucronata,
Bruguiera cylindrica, Bruguiera parviflora, B. gymnorrhiza, Ceriops
tagal, Ceriops decandra, Heritiera littoralis, Lumnitzera littorea,
Sonneratia alba, S. ovata, Xylocarpus granatum, Xylocarpus
moluccensis, Avicennia alba and Avicennia officinalis. Two
mangrove associates were recorded: Calophyllum inophyllum
Table 4
Summary of mangrove tree data per plot (n ¼ 45).

Plot Trees per 400 m2 Trees per ha Basal area (m2) Mean DBH

1 43 1075 1.385 18.871
2 42 1050 1.043 15.807
3 53 1325 1.095 14.916
4 52 1300 0.705 11.981
5 64 1600 1.610 12.966
6 29 725 0.487 13.974
7 48 1200 1.193 16.197
8 60 1500 1.435 15.187
9 53 1325 1.110 15.027
10 39 975 1.438 17.092
11 51 1275 1.063 14.549
12 74 1850 1.000 11.953
13 42 1050 0.913 14.869
14 15 375 0.679 21.985
15 39 975 1.027 17.061
16 59 1475 1.143 14.415
17 48 1200 1.037 15.277
18 72 1800 1.104 12.899
19 37 925 0.893 15.141
20 29 725 0.800 17.011
21 72 1800 1.082 12.264
22 62 1550 0.996 13.020
23 83 2075 0.739 9.860
24 31 775 1.025 17.566
25 50 1250 0.792 12.205
26 59 1475 0.995 13.561
27 106 2650 1.548 12.525
28 78 1950 1.160 11.887
29 51 1275 0.982 14.502
30 57 1425 1.474 16.471
31 58 1450 1.214 14.660
32 50 1250 1.344 17.199
33 48 1200 1.342 17.814
34 57 1425 1.220 15.550
35 55 1375 1.175 15.289
36 54 1350 1.641 18.236
37 60 1500 0.851 12.182
38 72 1800 1.245 13.801
39 57 1425 0.920 12.211
40 60 1500 1.111 14.285
41 20 500 0.055 5.392
42 0 0 0.000 0.000
43 87 2175 0.185 4.628
44 74 1850 0.101 3.351
45 14 350 0.620 20.583
Average 53 1313 0.999 13.916

DBH is diameter at breast height; AGB is above-ground biomass; BGB is below-ground b
The ratio of BGB to AGB is 0.38.
(n ¼ 2) and Intsia bijuga (n ¼ 1), but not included in species
importance or biomass calculations.

Tree counts ranged from 0 to 106 trees per plot (Table 4). The
0 tree plot contained mangrove trees of DBH < 4.5 cm, which is
below the threshold for biomass determination using the allo-
metric equations. Density of the 1.8-ha sample area was
1313 trees ha�1 (Table 4). High total tree count and relative
density were found for R. apiculata (1461 trees; 61.8%) and
R. mucronata (375 trees; 15.9%; Table 5). Importance value
indices for the two dominant Rhizophora species were 151 and
51, respectively (Table 5). A. alba had the third highest domi-
nance (1.973 m2 ha�1), but only the fourth highest importance
value (IVI ¼ 18), lower than that of X. granatum (IVI ¼ 25). This
anomaly occurs because relatively few A. alba trees were pre-
sent, but they were large in size compared to the other dominant
species.

Total above-ground biomass in each 400 m2 plot ranged from 0
to 18,000 kg (median¼ 9393 kg). Estimated below-ground biomass
in each plot ranged from 0 to 6080 kg (median ¼ 3626 kg). The
overall ratio of BGB to AGB was 0.38. This ratio is calculated using
AGB kg/400 m2 BGB kg/400 m2 AGB Mg ha�1 BGB Mg ha�1

13,817.337 5142.297 345.433 128.557
10,335.440 3883.472 258.386 97.087
9921.330 3856.719 248.033 96.418
5776.360 2341.560 144.409 58.539

17,991.740 5647.671 449.794 141.192
3988.444 1629.497 99.711 40.737

11,408.271 4322.438 285.207 108.061
14,325.243 5352.087 358.131 133.802
10,132.869 3938.587 253.322 98.465
15,794.104 5121.420 394.853 128.036
9439.333 3619.454 235.983 90.486
7885.815 3214.068 197.145 80.352
7589.502 2893.871 189.738 72.347
5797.062 2062.049 144.927 51.551
9895.858 3773.957 247.396 94.349

10,230.254 3979.934 255.756 99.498
9347.317 3633.146 233.683 90.829
8516.277 3446.974 212.907 86.174
8188.038 3040.095 204.701 76.002
7889.736 2957.445 197.243 73.936
8766.425 3446.435 219.161 86.161
8779.973 3501.067 219.499 87.527
5413.933 2325.818 135.348 58.145
8911.346 3179.487 222.784 79.487
6489.086 2524.649 162.227 63.116
8241.872 3299.101 206.047 82.478

12,646.697 5147.821 316.167 128.696
10,278.548 4062.997 256.964 101.575
8441.013 3338.528 211.025 83.463

13,577.793 5162.475 339.445 129.062
11,400.768 4396.304 285.019 109.908
12,271.223 4661.985 306.781 116.550
12,356.818 4715.881 308.920 117.897
10,988.155 4316.823 274.704 107.921
10,829.073 4215.957 270.727 105.399
16,129.336 6078.785 403.233 151.970
7169.080 2903.372 179.227 72.584

10,823.914 4321.418 270.598 108.035
8488.238 3267.708 212.206 81.693
9846.540 3899.712 246.163 97.493
188.231 93.603 4.706 2.340

0.000 0.000 0.000 0.000
674.206 336.815 16.855 8.420
497.617 240.983 12.440 6.025

5753.584 1988.690 143.840 49.717
9049.640 3450.737 226.241 86.268

iomass.



Table 5
Importance value index (IVI) and other indices for each species present in this study.

Species Count Density (no. of trees/plot) RD (%) Frequency RF (%) Basal area (m2) Dominance (m2 ha�1) RDo (%) IVI

R. apiculata 1461 32.47 61.80 0.93 22.58 30.100 16.722 66.922 151.30
R. mucronata 375 8.33 15.86 0.73 17.74 7.693 4.274 17.105 50.71
X. granatum 113 2.51 4.78 0.64 15.59 1.964 1.091 4.366 24.74
B. cylindrica 81 1.80 3.43 0.31 7.53 0.368 0.205 0.819 11.77
S. alba 71 1.58 3.00 0.04 1.08 0.138 0.077 0.308 4.39
A. alba 63 1.40 2.66 0.29 6.99 3.552 1.973 7.898 17.55
L. littorea 54 1.20 2.28 0.02 0.54 0.037 0.021 0.083 2.90
C. tagal 50 1.11 2.12 0.33 8.06 0.199 0.110 0.442 10.62
A. officinalis 30 0.67 1.27 0.20 4.84 0.422 0.235 0.939 7.05
B. parviflora 24 0.53 1.02 0.22 5.38 0.318 0.177 0.707 7.10
X. moluccensis 23 0.51 0.97 0.29 6.99 0.095 0.053 0.212 8.17
S. ovata 12 0.27 0.51 0.02 0.54 0.023 0.013 0.052 1.10
H. littoralis 5 0.11 0.21 0.04 1.08 0.052 0.029 0.117 1.40
C. decandra 1 0.02 0.04 0.02 0.54 0.001 0.001 0.003 0.58
B. gymnorrhiza 1 0.02 0.04 0.02 0.54 0.013 0.007 0.028 0.61
Total 2364 52.53 100.00 4.13 100.00 44.98 24.987 100.00 300.00

RD is relative density; RF is relative frequency; RDo is relative dominance; frequency refers to the percentage of the 45 plots containing the species. The important value is
calculated as: IVI ¼ RD þ RF þ RDo, where relative density (RD), relative frequency (RF), and relative dominance (RDo) can add up to a maximum value of 300 (per Cintron &
Schaeffer Novelli, 1984; Curtis & McIntosh, 1950).
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the average BGB (Mg ha�1) and AGB (Mg ha�1) of all the recorded
plots; and it is in general agreement with the root:shoot ratios
reviewed by Yuen, Ziegler, Webb, and Ryan (2013) and Ziegler et al.
(2012).

Model selection

Examination of the histograms of the 14 predictor variables
clearly shows which variables had more variation, and therefore
might make better predictors (Fig. 2). Half of the variables could be
discarded using this observation (Ratio 3, Ratio 4, Ratio 5, Ratio 6,
Band 1, Band 3, NDVI). The correlation coefficients (r) of various
combinations of the 14 predictor variables illustrates that dis-
carding these seven variables did not affect model accuracy nega-
tively (Table 6). Of all the combinations examined, the set of
variables found to produce the optimal models were Band 2, Band
4, Ratio 1, Minimum elevation and Maximum elevation (Table 6).
Themodel with the highest correlation coefficient (r) was a support
vector machine regression model developed using the SMOreg al-
gorithm (Table 3; Shevade, Keerthi, Bhattacharyya, & Murthy, 1999;
Smola & Schoelkopf, 2004).

Model results

The best AGB model came from a support vector machine
regression with the following equation:

AGB ¼0:16*½Elevation� þ 0:27*½Band 1�=½Band 2�
� 0:11*½Band 2� þ 0:41*½Band 4� � 0:03

(4)

where all variables are normalized to the range 0e1; Band 1 is the
blue spectral band (450e520 nm); Band 2 is the green spectral
band (520e600 nm); and Band 4 is the near infrared spectral band
(760e900 nm). This model had a correlation coefficient of 0.81. The
model originally contained terms for minimum and maximum el-
evations, however because we applied this model at 2-m resolution
rather than the 20-m resolution of the sample plots, there were no
longer overlapping elevation pixels, therefore each 2-m pixel only
contained a single elevation value. This necessitated the collapse of
the minimum and maximum elevation variables into one elevation
term in the final model (Equation (4)).

To evaluate model performance, observed and predicted
biomass values were plotted and the two variables were regressed
as per Pineiro, Perelman, Guerschman, and Paruelo (2008; Fig. 3).
The slope of the regression was 0.15 units greater than the slope of
the 1:1 line and was highly significant at p < 0.0001, which in-
dicates the model over-estimates biomass at low observed values
and under-estimates at high values. The intercept of the regression
was not significantly different from zero. As the null hypothesis for
the slope was rejected, but that for the intercept was accepted, the
model is said to be unbiased (Pineiro et al., 2008). Computing the
Theil’s coefficients shows that the majority of the variance in the
observed values which are not explained by the model is due to
unexplained variance (Uerror ¼ 93%; Paruelo, Jobbagy, Sala,
Lauenroth, & Burk, 1998). The model had a coefficient of determi-
nation (r2) of 0.66 and was highly significant at p < 0.0001. The
Root-Mean-Square Deviation (RMSD) estimates themean deviation
of the model predictions from the observed values to be
53.4 Mg ha�1. As the model has been shown to be unbiased, the
RMSD is the standard error of the model.

The above-ground biomass for the 151-ha Kamphuanmangrove,
as computed by Equation (4), was 250 � 53.4 Mg ha�1 with the
highest carbon stocks located in the mangrove interior and the
landward edge (Fig. 4). Using the 0.38 ratio of below-ground to
above-ground biomass yielded an estimated below-ground
biomass of 95 Mg ha�1 (see legend in Table 4). Combined AGB
and BGB at the site was 345 � 72.5 Mg ha�1. Using the 0.45 con-
version factor between biomass and carbon stock (Twilley et al.,
1992), the estimated above- and below-ground carbon biomass
was 113 and 42.8 Mg C ha�1, respectively.
Discussion

Mangrove community composition and biomass

Fifteenmangrove tree species were found at our study site along
the Kamphuan River. This represents higher species diversity than
has been found previously in Ranong and Trang Provinces of
Southern Thailand (Table 7). Previously, the highest recorded spe-
cies diversity was found at the Mangrove Forest Research Center in
Ranong by Kongsangcha et al. (1993) and Macintosh, Aston, and
Havanon (2002), where twelve species were recorded. Eleven
species were reported for Rachakrud subdistrict and as few as six
species were recorded elsewhere in Ranong (Doydee & Buot, 2010;
Tamai & Iampa,1988; Table 7). These differences in species diversity
among nearby study sites could be an artifact of sampling design



Fig. 2. Histograms of predictor variables. Histograms of the 14 predictor variables examined in this modeling exercise. Elevation values are in meters (m), band values are in
reflectance counts (r.c.) and ratio and NDVI values are dimensionless units (d.u.). Examination of the histograms shows clearly which variables have more variation, and therefore
might make better predictors. Half of the variables could be discarded using this observation (Ratio 3, Ratio 4, Ratio 5, Ratio 6, Band 1, Band 3, NDVI). The data in Table 6
illustrate that discarding these seven variables did not negatively affect model results. Of all the combinations examined, the set of variables found to produce the optimal
models were Band 2, Band 4, Ratio 1, Minimum elevation and Maximum elevation.
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which may miss rare species, particularly given the dominance of
Rhizophora species found at our site: R. apiculatawas present in 42
out of 45 plots, and it was dominant in 33; R. mucronata was pre-
sent in 33 plots, and dominant in 6.

The AGB at our Kamphuan River site is on the high end of
values reported for other Thai mangroves. In a comparison of
eight studies, AGB in Thai mangrove sites ranged from 62 to
299 Mg ha�1, with this study coming in at the second highest
with 250 Mg ha�1 (Table 8). Not surprisingly, the AGB values
follow a gradient of disturbance with sites exhibiting more hu-
man disturbance (e.g. secondary forests) having less AGB. How-
ever, human disturbance doesn’t necessarily lead to decreased
AGB e the site with the highest recorded mangrove AGB in
Southeast Asia was in a mature, Rhizophora-dominated stand in
Matang, Malaysia, where the mean AGB was 409 Mg ha�1 (Putz &
Chan, 1986). Much of the Matang mangrove is intensively farmed
on a cutting rotation for charcoal production, so it is not repre-
sentative of natural mangrove, but rather a highly disturbed and



Table 6
Predictor variable pruning showing the correlation coefficients of the SMOreg model developed using the selected predictor variables.

Correlation
coefficient

Band 1 Band 2 Band 3 Band 4 Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5 Ratio 6 NDVI Minimum
elevation

Maximum
elevation

Average
elevation

0.81a * * * * *
0.81 * * * * * *
0.80 * * * * * * * * * *
0.80 * * * * * * * * *
0.80 * * * * * * * *
0.80 * * * * * * *
0.80 * * * *
0.79 * * *
0.77 * * * * * * * * * * * * * *
0.77 * * * * * * * * * * * * *
0.77 * * * * * * * * * * * *
0.77 * * * * * * * * * * *
0.66 * *
0.36 *

Shaded and starred boxes indicate which predictor variables were used in each model e a white box indicates the variable was not used.
a The most accurate model, generated using Band 2, Band 4, Ratio 1, Minimum elevation andMaximum elevation. Notably, the correlation coefficients drop off considerably

when fewer variables are used.
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highly managed mangrove. The initial planting spacing of 1.2e
1.8 m is considerably more dense than found naturally at our
Kamphuan River site (Alongi, 2011; Muda & Mustafa, 2003).

As forest structure and composition evolve over time due to
ecological responses to physical and chemical changes in the
ecosystem, species density and carbon storage also change (Alongi,
2011). With the exception of the largest individuals, most of the
trees in the Rhizophora-dominated Kamphuan River mangrove
stand are about 22e27 years old (Fujioka et al., 2008). Thus, canopy
production has likely reached its peak, which generally occurs after
25e30 years in R. apiculata plantations in Southeast Asia (Alongi,
2011). Production should continue at this level for more than
another 80 years (Alongi, 2011). With changes expected in forest
Fig. 3. Predicted versus observed biomass. Predicted versus observed biomass in each
of forty-five sample plots. Predicted biomass was computed using a support vector
machine regression and observed biomass was computed using an allometric equation
involving field-measured tree DBH and wood density data. The dashed line indicates
the 1:1 line of perfect agreement. The solid line indicates the regression of observed
versus predicted biomass, and the equation shows the slope and intercept values of
this regression. The model has a coefficient of determination of 0.66 and is highly
significant at p < 0.0001. The regression line indicates the model over-estimates
biomass at low observed values and under-estimates at high values.
dynamics over the decades, subsequent studies could focus on how
carbon storage changes in natural versus disturbed stands.

An appraisal of techniques to estimate above-ground biomass and
carbon storage in mangroves

Remote sensing-based models are the most feasible option to
develop stand biomass estimates in mangrove forests with areas
greater than a few hectares; however, they can only be as good as
the input data and the models used to derive those data. This study
produced a remote sensing model for biomass based on plot data
derived from allometric equations using tree measurements
collected in the field. The allometric equations were derived from a
small number of trees (n ¼ 104), and were only based on trees with
DBHs of less than 48.9 cm (Komiyama et al., 2005). Therefore, the
accuracy of the equation is known only for relatively small trees.
This may explain why evaluation of the remote sensing model
showed the model over-estimated biomass at low observed values,
under-estimated at high values, and showed greatest error at high
biomass values. Plots of high biomass contain the largest trees,
Fig. 4. Map of mangrove biomass. Spatial distribution of above-ground biomass per
hectare in the 151-ha Kamphuan mangrove. Values are presented in intervals of �0.5
standard deviation from the mean above-ground biomass of 250 Mg ha�1. One stan-
dard deviation is equal to 74 Mg ha�1.



Table 7
Comparison of species presence and dominance in other study sites in Ranong, Trang, Phuket and Phangnga Provinces in Thailand.

Species name Family A B C C D D E E F F G G H H I J K L M N O P Q

Aegiceras corniculatum Myrsinaceae p̂ p p p p p p
Avicennia alba Avicenniaceae p p p p p p p
Avicennia marina Avicenniaceae p̂ 102 p p p p p p
Avicennia officinalis Avicenniaceae p p p p p p p p p 88 p p p
Bruguiera cylindrica Rhizophoraceae p p p p p p p p p p p p * p 91
Bruguiera gymnorrhiza Rhizophoraceae p p p p *
Bruguiera parviflora Rhizophoraceae p p 103 p p p p p p p p 77 p p p p p
Ceriops decandra Rhizophoraceae p p p p p p 99 105 p p p p p
Ceriops tagal Rhizophoraceae P p p p p p p p p p p p p p
Derris indica Fabaceae p̂ p p
Excoecaria agallocha Euphorbiaceae p̂ p p p
Heritiera littoralis Sterculiaceae p p p p p
Lumnitzera littorea Combretaceae p p p
Lumnitzera racemosa Combretaceae p̂ p
Rhizophora apiculata Rhizophoraceae 151 131 p p 120 177 190 112 p p p p p 107 p * * * p 178 130 44 p
Rhizophora mucronata Rhizophoraceae p p p 120 p p p p p p p p p p p p p p
Scyphiphora hydrophyllacea Rubiaceae p̂ p
Sonneratia alba Sonneratiaceae p p p p p p p p * p
Sonneratia ovata Sonneratiaceae p
Xylocarpus granatum Meliaceae p p p p p p p p p p p p p p
Xylocarpus moluccensis Meliaceae p p p p p p p p p
Total no. of species 15 12 7 5 7 7 8 9 11 11 9 8 7 6 13 6 5 8 6 5 5 10

‘p’ indicates species was present in the case study (letters A to P), numbers are reported IVI values of dominant species; ‘p̂’ indicates presence of species reported by local guides
but was not recorded in our plots; ‘*’ indicates a dominant species for which no IVI value was reported.
(A) Ranong Province, Kamphuan village (this study).
(B) Ranong Province, Mangrove Forest Research Center (Kongsangcha et al., 1993; http://www.nacsj.or.jp/pn/houkoku/h01-08/h03-no19.html).
(C) Ranong, Suksamran District, Talaynog Village (Doydee & Buot, 2010).
(D) Ranong, Suksamran District, Hadsaykaow Village (Doydee & Buot, 2010).
(E) Ranong, Ngaw Village (Doydee & Buot, 2010).
(F) Ranong, Rachakrud Village (Doydee & Buot, 2010).
(G) Ranong, Kapoe District, Bangben Village (Doydee & Buot, 2010).
(H) Ranong, Kapoe District, Banghin Village (Doydee & Buot, 2010).
(I) Ranong, Mangrove Forest Research Center, northern Klong Ngao Village (Macintosh, Aston, & Havanon, 2002).
(J) Ranong, Kapoe District, Klong Naka Village (Tamai & Iampa, 1988).
(K) Ranong, Hatsaikhao Village (Komiyama, Ogino, Aksornkoae, & Sabhasri, 1987) e only species zones mentioned.
(L) Ranong, Hatsaikao District, Klong Ngao Village (Permanent transect; Tamai, Nakasuga, Tabuchi, & Ogina, 1986).
(M) Ranong, Hatsaikao District, Klong Ngao Village (Subplot of transect, Sonneratia zone; Tamai et al., 1986).
(N) Trang, Laem Makham (Community forest; Sudtongkong & Webb, 2008) e only top 5 most important.
(O) Trang, To Ban (State forest; Sudtongkong & Webb, 2008) e only top 5 most important.
(P) Phuket, Ko Yao Yai (Chansang, 1984).
(Q) Phangnga, Mangrove Habitat Study Area (Phongsuksawat, 2002).
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whose biomasses are likely under-estimated using Equation (1).
Despite these limitations, the remote sensing biomass model
developed in this study was able to derive an AGB estimate for the
Kamphuan River mangrove with a standard error of �21% based on
Leave-One-Out cross-validation.

Improving these larger-than-plot scale biomass models will
require improving the raw data, particularly those regarding the
allometric equations upon which plot biomass data are derived. As
noted, larger trees need to be included in the derivation of allo-
metric equations if the biomasses of large trees are to be modeled
with any certainty. However, the destructive sampling of large trees
is undesirable tomost researchers. An alternative is to develop non-
destructive methods of measuring tree biomasses. A promising,
size-independentmethod is three dimensional (3D)modeling. New
technology allows anyonewith a digital camera and internet-access
the ability to develop 3D models (e.g. Autodesk, 2013;
My3DScanner, n.d.) that could be used to compute tree volumes,
which, together with wood density, remote sensing derived tree
height and other non-destructive measurements could be used to
estimate tree biomasses (e.g. Fatoyinbo et al., 2008; Simard et al.,
2006; Simard, Fatoyinbo, & Pinto, 2009).

While the model presented here was shown to be the optimal
model at this site and given this particular set of training data,
practitioners should be wary of applying this model to other sites,
particularly sites with dissimilar species composition and at sites
located outside Ranong Province, unless they have determined
model accuracy by collecting ground data using the methods
described in this paper.

Additionally, while the method of model development illus-
trated here is feasible for areas on the scale of several hundred
hectares, it becomes less feasible at larger scales due to the
prohibitive cost of acquiring high-resolution imagery. At those
larger scales, methods involving MODIS and Landsat imagery
have been shown effective for mapping carbon stocks and
landcover change (e.g. Chen, Li, Liu, & Ai, 2013; Klein, Gessner, &
Kuenzer, 2012).

Conclusions and management implications

The Kamphuan River mangrove stand was dominated by two
Rhizophora species (R. apiculata and R. mucronata) that comprised
about 77.7% of the total tree count. The estimated tree carbon for
the 151 ha site was 155 � 32.6 Mg C ha�1 (above-ground carbon
biomass ¼ 113 Mg C ha�1, below-ground carbon
biomass ¼ 42 Mg C ha�1). These estimates were developed using
high-resolution GeoEye-1 satellite imagery, medium resolution
ASTER satellite elevation data, field-based biomass data, and a
support vector machine regression model. The model shows
greatest prediction error in the upper ranges of observed biomass
suggesting a need for allometric equations calibrated over a larger

http://www.nacsj.or.jp/pn/houkoku/h01-08/h03-no19.html


Table 8
Comparison of tree density, above-ground biomass (AGB) and below-ground biomass (BGB) at several sites in Thailand, and one in Malaysia.

Province (site) AGB (Mg ha�1) Forest type Dominant species Reference

Perak, Malaysia (Matang) 409 Plantation R. apiculata Putz and Chan (1986)
Ranong (Ranong Biosphere Reserve) 281e299 Primary Mixed spp. Komiyama et al. (1987) and Tamai et al. (1986)
Ranong (Kamphuan River) 250 Primary R. apiculata This study
Chumphon (Sawi Bay) 216 Plantation Rhizophora spp. Alongi and Dixon (2000) in Komiyama et al. (2008)
Phuket 159 Secondary R. apiculata Christensen (1978)
Trat 142 Secondary Mixed spp. Poungparn (2003) in Komiyama et al. (2008)
Pang-nga 108 Secondary Mixed spp. Phongsuksawat (2002)
Satun 92 Secondary C. tagal Komiyama et al. (2000) in Komiyama et al. (2008)
Pang-nga 62 Secondary Mixed spp. Poungparn (2003) in Komiyama et al. (2008)
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range of tree sizes. The estimated total biomass of
345� 72.5 Mg ha�1, high density (1313 trees ha�1), and presence of
15 mangrove species indicates this mangrove forest is in good
health despite being located in an area where encroachment for
aquaculture and timber extraction are of increasing concern.

These observations provide valuable information for mangrove
change monitoring and management in Southern Thailand where
coastal development has, and likely will continue to result in sub-
stantial changes to the natural environment. Since the 2004 Indian
Ocean Tsunami, conservation groups have begun mangrove
revegetation projects in the area. These and other mangrove con-
servation efforts will benefit from knowledge gained in studies
such as ours. In the meantime, mangrove conversion for shrimp
aquaculture, timber and urban development are still immediate
threats, which have greatly affected surrounding shorelines in
Thailand. Furthermore, accelerated sea level rise may prove a key
tipping point to long-term mangrove survival (Friess et al., 2012),
particularly in locations such as the Kamphuan River where
mangrove migration to higher elevations is constricted by land-
ward human structures. Accurate information on standing carbon
stocks provides a financial justification for the better protection,
management and rehabilitation of these critical coastal ecosystems.
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